56 resultados para valence state manipulation
Resumo:
The electronic structure and mechanical properties Of UC2 and U2C3 have been systematically investigated using first-principles calculations by the projector-augmented-wave (PAW) method. Furthermore, in order to describe precisely the strong on-site Coulomb repulsion among the localized U 5f electrons, we adopt the generalized gradient approximation +U formalisms for the exchange-correlation term. We show that our calculated structural parameters and electronic properties for UC2 and U2C3 are in good agreement with the experimental data by choosing an appropriate Hubbard U = 3 eV. As for the chemical bonding nature, the contour plot of charge density and total density of states suggest that UC2 and U2C3 are metallic mainly contributed by the 5f electrons, mixed with significant covalent component resulted from the strong C-C bonds. The present results also illustrate that the metal-carbon (U-C) bonding and the carbon-carbon covalent bonding in U2C3 are somewhat weaker than those in UC2, leading to the weaker thermodynamic stability at high temperature as observed by experiments.
Resumo:
By neutron diffraction and other experiments, we have found that oxygen ions in YBCO can diffuse out of the sample in vacuo at room and low temperature, while the T(c) decreases greatly. We have also found that if the vacuum-deoxidation process lasts for several days there will be a damping oscillation of T(c) with time (t), and higher vacuum corresponds to a greater amplitude and a shorter period. We tentatively think that T(c) should satisfy the following function: T(c0) is-proportional-to T(c)e(-betat)cos (omegat + phi); it may be due to the diffusion of oxygen and the saturation of the valence state.
Resumo:
By using the average band-gap model, the chemical bond properties of (La1-x, M-x)(2)CuO4(M=Ba, Sr) were calculated. The calculated covalencies for Cu-O and La-O bond in the compounds are 0.3 and 0.03 respectively. Mossbauer isomer shifts of Fe-57 doped in La2CuO4 and Sn-119 doped in La2CuO4 were calculated by using the chemical surrounding factor defined by covalency and electronic polarizability. Four valence state tin and three valence iron sites were identified in Fe-57 and Sn-119 doped La2CuO4.
Resumo:
By using the chemical bond theory of complex crystals, the chemical bond properties of REBa2Cu3O7 (RE = Eu, Y) were calculated. The calculated covalencies for Cu(1)-O and Cu(2)-O bond in REBa2Cu3O7 compounds are 0.41 and 0.28 respectively. Mossbauer isomer shifts of Fe-57 doped, and Sn-119 doped in REBa2Cu3O7-x were calculated by using the chemical environmental factor, h(e), defined by covalency and electronic polarizability. Four valence state tin ion and iron ion sites were identified in Fe-57 and Sn-119 doped REBa2Cu3O7-x superconductors.
Resumo:
By using the clinical bond theory of dielectric description, the chemical bond parameters of (Tl.Pb) - 1223 was calculated. The results show that the Sr-O, Tl-O, and Ca-O types of bond have higher ionic character and the Cu-O types of bond have more covalent, character. Mossbauer isomer shifts of Fe-57 and Sn-119 doped in (Tl, Pb) -1223 were calculated by using the chemical environmental factor, h, defined by covalency and electronic polarizability. Four valence state tin and three valence iron sites were identified ill Fe-57, and Sn-119 doped (Tl, Pb) -1223 superconductor. We conclude that all of' the Fe atoms substitute the Cu at square planar Cu (H site, whereas Sn prefers to Substitute the square pyramidal Cu (2) site.
Resumo:
The dependence of the structure of the hosts on the M ion radius in MMgAl10O17 (M = Be, Mg, Ca, Sr, Ba, Pb, Eu, Mn, Fe, Co, Ni, Zn, Cd, Sn) system was studied and the luminescence of Eu2+ the mixed phase system was discussed. When M ion radius is less than 0.10 nm, the system MMgAl10O17 constructs by the mixed phases consisting of manegtoplumbite and spinel, alpha-alumina or spinel and alpha-alumina. In the mixed phase of manegtoplumbite and spinel and alpha-alumina, Eu2+ ion preferentially occupies lattice site of the cations in manegtoplumbite well matched with the radius and charge of Eu2+. There exists only d-->f transition emission of Eu2+ and no characteristic emission of Eu3+ occurs in those hosts. In the mixed phase of spinel and alpha-alumina, Eu2+ can enter the lattice site of Mg2+ ion or Al3+ ion and the d-->f and f-->f transition of Eu2+ can been observed respectively. Meanwhile, since the radius and charge of matrix lattice ions substituted by Eu2+ do not match with those of Eu2+, the valence state of Eu2+ is unstable. Eu2+ is partly changed into Eu3+ and the emission of Eu3+ is obviously observed even under the condition of reduction atmosphere. If reaction temperature is more than 1 150 degrees C, Al2O3 forms alpha-Al2O3 structure, the f-->f transition of Eu2+ appears. If reaction temperature is less than 1 150 degrees C, a mixed phase of alpha-Al2O3 and gamma-Al2O3 is formed, the f-->f transition of Eu2+ disappears and a new band emission from d-->f transition of Eu2+ occurs.
Resumo:
Bond covalency, bond susceptibility and macroscopic linear susceptibility in NdCr1-xMxO3 (M=Mn, Fe, Co, 0.0 less than or equal to x less than or equal to 1.0) are investigated by complex chemical bond theory. The results indicate the bond covalencies are insensitive to the doping level. With the increasing doping level, the macroscopic linear susceptibilities increase for M=Mn, Fe, decrease for M=Co. The valence state of Cr can be strongly influenced by the properties of the doping ions.
Resumo:
A series of LnSrNiO(4)(A(2)BO(4), Ln = La, Pr, Nd, Sm, Gd) mixed oxides with K2NiF4 structure, in which A-site(Sr) was partly substituted by individual light rare earth element, was prepared. The solid state physico-chemical properties including crystal structure, defect structure, IR spectrum, valence state of H-site ion, nonstoichiometric oxygen, oxygenous species, the properties of oxidation and reduction etc. as well as the catalytic behavior for NO decomposition on these mixed oxides were investigated. The results show that all of these mixed oxide catalysts have high activity for the direct decomposition of NO(at 900 degrees C the conversion of NO is more than 90%). The effect of the substitution of light rare earth elements at A-site on catalytic behavior for NO decomposition was elucidated.
Resumo:
Luminescence of europium (III), europium(II) and terbium(III) has been observed in Ba-3(PO4)(2):Eu, Tb phosphors which are synthesized in air atmosphere. The valence state of europium is influenced by amount of terbium. It is notable that the relative intensity of the emission spectra peaks corresponding to Eu2+ is increased if the amount of Tb3+ is increased. These phenomena can be explained by an electron transfer mechanism. We predict a new kind of two-rare-earth codoped trichromatic phosphors in Ba-3(PO4)(2) matrix.
Resumo:
The luminescence properties of BaB8O13:xEu,yTb phosphors which were synthesized in air atmosphere have been studied. The emissions of europium(III), terbium(III) and europium(II) have been observed in BaB8O13:xEu, yTb phosphors. Electron paramagnetic resonance (EPR) studies were carried out. The intensities of EPR peaks of europium(II) are increased if terbium(III) is increased in BaB8O13:Eu3+,yTb(3+) phosphors. So the valence state of europium is influenced by terbium(III). These phenomena can be explained by an electron transfer mechanism. We found a new kind of method to prepare trichromatic phosphor that two rare earth ions activated in a BaB8O13 matrix.
Resumo:
The new double-cubane cluster compound [NEt(4)](3)[Mo2Fe6S8(mu-OMe)(3)(SPh)(3)Cl-3] is synthesized from (NH4)(2)MoS4, FeCl3, Fe powder, S powder, NaSPh and NEt(4)Br in MeOH-DMF, its crystal structure is determined by X-ray crystallography, and results of XPS indicate a valence state of +4 for Mo.
Resumo:
Emission of europium(II) and europium(III) have been observed in SrMgF4 : xEu, yTb phosphors which are synthesized in Ar or Ar/H-2 flow. The valence state of Eu is influenced by terbium. It is notable that the intensities of the ESR peaks corresponding to EU(2+) are regularly changed when terbium ion is incorporated. The typical Tb3d XPS spectrum belonging to Tb4+ is also found when Eu is codoped. This phenomena can be explained by electron transfer mechanism Eu3+ + Tb3+-->EU(2+) + Tb4+. And its equilibrium constant is studied by ESR technique.
Resumo:
In this paper, the luminescence properties of SrB4O7: xEu, yTb phosphors were investigated. The SrB4O7: xEu, yTb phosphors were first synthesized in air atmosphere, and the emission spectra of Eu2+, Eu3+ and Tb3+ ions have been observed in phosphors. We found that the relative intensity of the emission of Eu2+ ion in the same matrix are increased when Tb3+ is incorporated in SrB4O7:Eu phosphor. So the valence state of europium is influenced by terbium. These phenomena can be explained using an electron transfer theory.
Resumo:
Three new bimetallic complexes were synthesized and crystalized by reactions of (CF3CO2)(3)Ln With R(1) AlR(2)(Ln=Nd and Y, R(1)=H, R=i-C4H9; Ln=Eu, R=R(1)=C2H5) in tetrahydrofuran solution, and their crystal structures were determined using a X-ray diffraction method. The structures and the questions on valence state and noncoplanarity in the structures were confirmed and cracked by means of H-1 NMR and C-13 NMR spectra, especially by C-13-H-1 COSY 2D NMR technique. A general formula of molecules of the three rare earth complexes was defined as follows: [(mu-CF3CO2)(2)Ln(mu-CF3CHO2)AlR(2) . 2THF](2) A mechanism on the formation of the new complexes was also proposed through the following five steps: alkylating, beta-elimination (or hydrogenation), hydrogen transfer, linkage and association. Both Y-Al and Eu-Al complexes function as a catalyst in polymerization of MMA and ECH. The polymer obtained from the first monomer is mainly syndiotactic chain structure and the polymerization of the last monomer shows higher catalytic activity. The Y-Al complex also capable of ring-opening polymerization of THF in case of adding-vary small amount of ECH and a oxonium ion mechanism of THF polymerization was suggested from the analysis of THF polymer terminal.
Resumo:
Europium (II) and europium (III) have been observed in MMgF(4):xEu, yTb (M=Ca, Sr, Ba) phosphors using their typical photoluminescence spectra when are synthesized in Ar or an Ar/H-2 stream. The valence state of Eu is influenced by terbium. It is notable that the intensities of the electron spin resonance peaks corresponding to Eu2+ change in a regular way when terbium ions are incorporated which can be explained by an electron transfer mechanism.