36 resultados para transformation-induced plasticity


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microstructural evolution during surface mechanical attrition treatment of cobalt (a mixture of hexagonal close packed (hep) and face-centered cubic (fcc) phases) was investigated. In order to reveal the mechanism of grain refinement and strain accommodation. The microstructure was systematically characterized by both cross-sectional and planar-view transmission electron microscopy. In the hcp phase, the process of grain refinement. Accompanied by an increase in strain imposed in the surface layer. Involved: (1) the onset of 110 111 deformation twinning, (2) the operation of (1 120) 110 1 0} prismatic and (1 120) (000 1) basal slip, leading to the formation of low-angle dislocation boundaries, and (3) the successive subdivision of grains to a finer and finer scale. Ressulting in the formation of highly misoriented nanocrystalline grains. Moreover. The formation of nanocrystalliies at the grain boundary and triple junction was also observed to occur concurrently with straining. By contrast. The fec phase accommodated strain in a sequence as follows: (1) slip of dislocations by forming intersecting planar arrays of dislocations, (2) {1 1 1} deformation twinning, and (3) the gamma(fcc) --> epsilon(hcp) martensitic phase transformation. The mechanism of grain refinement was interpreted in terms of the structural subdivision of grains together with dynamic recrystallization occurring in the hep phase and the gamma --> E: martensitic transformation in the fcc phase as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A constitutive model, based on an (n + 1)-phase mixture of the Mori-Tanaka average theory, has been developed for stress-induced martensitic transformation and reorientation in single crystalline shape memory alloys. Volume fractions of different martensite lattice correspondence variants are chosen as internal variables to describe microstructural evolution. Macroscopic Gibbs free energy for the phase transformation is derived with thermodynamics principles and the ensemble average method of micro-mechanics. The critical condition and the evolution equation are proposed for both the phase transition and reorientation. This model can also simulate interior hysteresis loops during loading/unloading by switching the critical driving forces when an opposite transition takes place.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on a constitutive law which includes the shear components of transformation plasticity, the asymptotic solutions to near-tip fields of plane-strain mode I steadity propagating cracks in transformed ceramics are obtained for the case of linear isotropic hardening. The stress singularity, the distributions of stresses and velocities at the crack tip are determined for various material parameters. The factors influencing the near-tip fields are discussed in detail.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel pulsed laser surface processing technology is introduced, which can make use of the spatial and temporal profile of laser pulse to obtain ideal hardening parameters. The intensity distribution of laser pulse is spatially and temporally controlled by using laser shape transformation technology. A 3D numerical model including multi-phase transformations is established to explore material microstructure evolution induced by temperature field evolution. The influences of laser spatial-temporal profiles on hardening parameters are investigated. Different from the continuous laser processing technology, results indicate that spatial and temporal profiles are important factors in determining processing quality during pulsed laser processing method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the role of vertical component of Surface tension of a droplet on the elastic deformation of a finite-thickness flexible membrane was theoretically analyzed using Hankel transformation. The vertical displacement at the Surface was derived and can be reduced to Lester's or Rusanov's solutions when the thickness is infinite. Moreover, some Simulations of the effect of a liquid droplet on a membrane with a finite thickness were made. The numerical results showed that there exists a saturated membrane thickness of the order of millimeter, when the thickness of a membrane is larger than such a value, the membrane can be regarded as a half-infinite body. Further numerical calculations for soft membrane whose thickness is far below the saturated thickness were made. By comparison between the maximum vertical displacement of an ultrathin soft membrane and a half-infinite body, we found that Lester's or Rusanov's solutions for a half-infinite body cannot correctly describe Such cases. In other words, the thickness of a soft membrane has great effect on the surface deformation of the ultrathin membrane induced by a liquid droplet. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiple refocusing of a tightly focused femtosecond laser due to the dynamic transformation between self-focusing and self-defocusing is employed to provide a novel method to produce quasi-periodic voids in glass. It is found that the diameter or the interval of the periodic voids increases with the increasing pulse energy of the laser. The detailed course for producing periodic voids is discussed by analysing the damaged track induced by the tightly focused femtosecond laser pulses. It is suggested that this periodic structure has potential applications in fabrication of three-dimensional optical devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The primary and secondary threshold intensities of ultraviolet-laser-induced preferential domain nucleation in nearly stoichiometric LiTaO3 is observed. The primary threshold is the minimum intensity to achieve the instantaneous preferential domain nucleation within the focus by the combined action of irradiation and electric fields. The secondary threshold is the minimum intensity to achieve the memory effect without any irradiation within the original focus. The space charge field created by the photoionization carriers is thought to be responsible for the instantaneous effect. The explanation based on the formation and transformation of extrinsic defect is presented for the memory effect. (c) 2008 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate a reversible resistance switching effect that does not rely on amorphous-crystalline phase transformation in a nanoscale capacitor-like cell using Ge1Sb4Te7 films as the working material. The polarity and amplitude of the applied electric voltage switches the cell resistance between low- and high-resistance states, as revealed in the current-voltage characteristics of the film by conductive atomic force microscopy (CAFM). This reversible SET/RESET switching effect is induced by voltage pulses and their polarity. The change of electrical resistance due to the switching effect is approximately two orders of magnitude.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long-term potentiation (LTP) and long-term depression (LTD) of the excitatory synaptic inputs plasticity in the hippocampus is believed to underlie certain types of learning and memory. Especially, stressful experiences, well known to produce long-lasting strong memories of the event themselves, enable LTD by low frequency stimulation (LFS, 3 Hz) but block LTP induction by high frequency stimulation (HFS, 200 Hz). However, it is unknown whether stress-affected synaptic plasticity has an impact on the output plasticity. Thus, we have simultaneously studied the effects of stress on synaptic plasticity and neuronal output in the hippocampal CA1 region of anesthetized Wistar rats. Our results revealed that stress increased basal power spectrum of the evoked synchronized-spikes and enabled LTD induction by LFS. The induction of stress-facilitated LTD but not LFS induced persistent decreases of the power spectrum of the synchronized-spikes and the frequency of the spontaneous unitary discharges; However, HFS induced UP in non-stressed animals and increased the power spectrum of the synchronized-spikes, without affecting the frequency of the spontaneous unitary discharges, but HFS failed to induce UP in stressed animals without affecting the power spectrum of the synchronized-spikes and the frequency of the spontaneous unitary discharges. These observations that stress-facilitated LTD induces the output plasticity through the synchronized-spikes and spontaneous unitary discharges suggest that these types of stress-related plasticity may play significant roles in distribution, amplification and integration of encoded information to other brain structures under stressful conditions. (C) 2004 Elsevier Ireland Ltd and The Japan Neuroscience Society. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Learning and memory are exquisitely sensitive to behavioral stress, but the underlying mechanisms are still poorly understood. Because activity-dependent persistent changes in synaptic strength are believed to mediate memory processes in brain areas such as the hippocampus we have examined the means by which stress affects synaptic plasticity in the CA1 region of the hippocampus of anesthetized rats, Inescapable behavioral stress (placement on an elevated platform for 30 min) switched the direction of plasticity, favoring low frequency stimulation-induced decreases in synaptic transmission (long-term depression, LTD), and opposing the induction of long-term potentiation by high frequency stimulation, We have discovered that glucocorticoid receptor activation mediates these effects of stress on LTD and longterm potentiation in a protein synthesis-dependent manner because they were prevented by the glucocorticoid receptor antagonist RU 38486 and the protein synthesis inhibitor emetine. Consistent with this, the ability of exogenously applied corticosterone in non-stressed rats to mimic the effects of stress on synaptic plasticity was also blocked by these agents, The enablement of low frequency stimulation-induced LTD by both stress and exogenous corticosterone was also blocked by the transcription inhibitor actinomycin D, Thus, naturally occurring synaptic plasticity is liable to be reversed in stressful situations via glucocorticoid receptor activation and mechanisms dependent on the synthesis of new protein and RNA, This indicates that the modulation of hippocampus-mediated learning by acute inescapable stress requires glucocorticoid receptor-dependent initiation of transcription and translation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stress in early life is believed to cause cognitive and affective disorders, and to disrupt hippocampal synaptic plasticity in adolescence into adult, but it is unclear whether exposure to enriched environment (EE) can overcome these effects. Here, we rep

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The network oscillation and synaptic plasticity are known to be regulated by GABAergic inhibition, but how they are affected by changes in the GABA transporter activity remains unclear. Here we show that in the CA1 region of mouse hippocampus, pharmacolog

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The formation of memory is believed to depend on experience- or activity-dependent synaptic plasticity, which is exquisitely sensitive to psychological stress since inescapable stress impairs long-term potentiation (LTP) but facilitates long-term depression (LTD). Our recent studies demonstrated that 4 days of opioid withdrawal enables maximal extents of both hippocampal LTP and drug-reinforced behavior; while elevated-platform stress enables these phenomena at 18 h of opioid withdrawal. Here, we examined the effects of low dose of morphine (0.5 mg kg(-1), i.p.) or the opioid receptor antagonist naloxone (1 mg kg(-1), i.p.) on synaptic efficacy in the hippocampal CA1 region of anesthetized rats. A form of synaptic depression was induced by low dose of morphine or naloxone in rats after 18 h but not 4 days of opioid withdrawal. This synaptic depression was dependent on both N-methyl-D-aspartate receptor and synaptic activity, similar to the hippocampal long-term depression induced by low frequency stimulation. Elevated-platform stress given 2 h before experiment prevented the synaptic depression at 18 h of opioid withdrawal; in contrast, the glucocorticoid receptor (GR) antagonist RU38486 treatment (20 mg kg(-1), s.c., twice per day for first 3 days of withdrawal), or a high dose of morphine reexposure (15 mg kg(-1), s.c., 12 h before experiment), enabled the synaptic depression on 4 days of opioid withdrawal. This temporal shift of synaptic depression by stress or GR blockade supplements our previous findings of potentially correlated temporal shifts of LTP induction and drug-reinforced behavior during opioid withdrawal. Our results therefore support the idea that stress experience during opioid withdrawal may modify hippocampal synaptic plasticity and play important roles in drug-associated memory. (C) 2009 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Embryogenic calli of Kentucky bluegrass, named Md, were induced from mature seeds and embryos, and proliferated on medium K3 containing 2,4-dichlorophenoxyacetic acid (2,4-D, 10.0 mumol/L), 6-benzylaminopurine (BAR, 0.5 mumol/L) and K5 which was the K3 medium supplemented with cupric sulfa (0.5 mumol/L) under dim-light condition (20-30 mumol.m(-2).s-1, 16 h light) at 24 degreesC. Embryogenic calli were transformed with plasmids pDM805 Carring bar and gus genes, Which was mediated by an Agrobacterium strain AGL1, four transgenic lines were obtained. The important factors that affect the transformation efficiency and obtain desirable number of transgenic plants included: (1) the quality of embryogenic calli; (2) light condition and time of co-cultivation; (3) concentration of antibiotics used for suppressing the overgrowth of Agrobacterium in the course of transformed plant regeneration; (4) selection pressure, etc. The micro nutrient of cupric had significant influence on the quality of embryogenic calli. This presentation is the first successful protocol of Kentucky bluegrass transformation mediated by Agrobacterium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We theoretically study the conducting electronic contribution to the cohesive force in a metallic nanowire irradiated under a transversely polarized external electromagnetic field at low temperatures and in the ballistic regime. In the framework of the free-electron model, we have obtained a time-dependent two-level electronic wavefunction by means of a unitary transformation. Using a thermodynamic statistical approach with this wavefunction, we have calculated the cohesive force in the nanowire. We show that the cohesive force can be divided into two components, one of which is independent of the electromagnetic field (static component), which is consistent with the existing results in the literature. The magnitude of the other component is proportional to the electromagnetic field strength. This extra component of the cohesive force is originally from the coherent coupling between the two lateral energy levels of the wire and the electromagnetic field.