30 resultados para thermal evolution


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dependence of microstructure and thermal stability on Fe content of bulk Nd60Al10Ni10Cu20-xFex (0 less than or equal to x less than or equal to 20) metallic glasses is investigated by means of differential scanning calorimetry (DSC), X-ray diffraction (XRD) and high-resolution transmission electron micrograph (HRTEM). All samples exhibit typical amorphous feature under the detect limit of XRD, however, HRTEM results show that the microstructure of Nd60Al10Ni10Cu20-xFex alloys changes from a homogeneous amorphous phase to a composite structure consisting of clusters dispersed in amorphous matrix by increasing Fe content. Dynamic mechanical properties of these alloys with controllable microstructure are studied, expressed via storage modulus, the loss modulus and the mechanical damping. The results reveal that the storage modulus of the alloy without Fe added shows a distinct decrease due to the main a relaxation. This decrease weakens and begins at a higher temperature with increasing Fe content. The mechanism of the effect of Fe addition on the microstructure and thermal stability in this system is discussed in terms of thermodynamics viewpoints. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Onset and evolution of the Rayleigh-Benard (R-B) convection are investigated using the Information Preservation (IP) method. The information velocity and temperature are updated using the Octant Flux Splitting (OFS) model developed by Masters & Ye based on the Maxwell transport equation suggested by Sun & Boyd. Statistical noise inherent in particle approaches such as the direct simulation Monte Carlo (DSMC) method is effectively reduced by the IP method, and therefore the evolutions from an initial quiescent fluid to a final steady state are shown clearly. An interesting phenomenon is observed: when the Rayleigh number (Ra) exceeds its critical value, there exists an obvious incubation stage. During the incubation stage, the vortex structure clearly appears and evolves, whereas the Nusselt number (Nu) of the lower plate is close to unity. After the incubation stage, the vortex velocity and Nu rapidly increase, and the flow field quickly reaches a steady, convective state. A relation of Nu to Ra given by IP agrees with those given by DSMC, the classical theory and experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanostructured FeAl intermetallics were prepared directly by mechanical alloying (MA) in a high-energy planetary ball-mill. The phase transformations and structural changes occurring in the studied material during mechanical alloying were investigated by X-ray diffraction (XRD). Transmission electron microscopy (TEM) was employed to examine the morphology of the powders. Thermal behavior of the milled powders was examined by differential scanning calorimetry (DSC). Disordered Fe(Al) solid solution was formed at the early stage. After 30 h of milling, Fe(Al) solid solution transformed into an ordered FeAl phase. The average crystallite size reduction down to about 12 nm was accompanied by the introduction of the average lattice strain up to 1.7%. The TEM picture showed that the size of milled powders was less than 30 nm. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structural evolution and temperature dependence of the Schottky barrier heights of Pt contacts on n-GaN epilayer at various annealing temperatures were investigated extensively by Rutherford backscattering spectrometry, x-ray diffraction measurements, Auger electron spectroscopy, scanning electron microscopy and current-voltage measurements. The temperature dependence of the Schottky barrier heights may be attributed to changes of surface morphology of Pt films on the surface and variation of nonstoichiometric defects at the interface vicinity. Experimental results indicated the degradation of Pt contacts on n-GaN above 600 degreesC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical transient current spectroscopy (OTCS), photoluminescence (PL) spectroscopy and excitonic electroabsorption spectroscopy have been used to investigate the evolution of defects in the low-temperature grown GaAs/AlGaAs multiple quantum well structures during the postgrowth rapid thermal annealing. The sample was grown at 350 degrees C by molecular beam epitaxy on miscut (3.4 degrees off (001) towards (111)A) (001) GaAs substrate. After growth, the sample was subjected to 30s rapid thermal annealing in the range of 500-800 degrees C. It is found that the integrated PL intensity first decreases with the annealing temperature, then gets a minimum at 600 degrees C and finally recovers at higher temperatures. OTCS measurement shows that besides As,, antisites and arsenic clusters, there are several relatively shallower deep levels with excitation energies less than 0.3 eV in the as-grown and 500 degrees C-annealed samples. Above 600 degrees C, OTCS signals from As,, antisites and shallower deep levels become weaker, indicating the decrease of these defects. It is argued that the excess arsenic atoms group together to form arsenic clusters during annealing. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strain relaxation in initially flat SiGe film on Si(1 0 0) during rapid thermal annealing is studied. The surface roughens after high-temperature annealing, which has been attributed to the intrinsic strain in the epilayers. It is interesting to find that high-temperature annealing also results in roughened interface, indicating the occurrence of preferential interdiffusion. It is suggested that the roughening at the surface makes the intrinsic strain in the epilayer as well as the substrate unequally distributed, causing preferential interdiffusion at the SiGe/Si interface during high-temperature annealing. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strain relaxation in initially flat SiGe film on Si(1 0 0) during rapid thermal annealing is studied. The surface roughens after high-temperature annealing, which has been attributed to the intrinsic strain in the epilayers. It is interesting to find that high-temperature annealing also results in roughened interface, indicating the occurrence of preferential interdiffusion. It is suggested that the roughening at the surface makes the intrinsic strain in the epilayer as well as the substrate unequally distributed, causing preferential interdiffusion at the SiGe/Si interface during high-temperature annealing. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermally induced evolution of phase transformations is a basic physical-chemical process in the dissociation of gas hydrate in sediment (GHS). Heat transfer leads to the weakening of the bed soil and the simultaneous establishment of a time varying stress field accompanied by seepage of fluids and deformation of the soil. As a consequence, ground failure could occur causing engineering damage or/and environmental disaster. This paper presents a simplified analysis of the thermal process by assuming that thermal conduction can be decoupled from the flow and deformation process. It is further assumed that phase transformations take place instantaneously. Analytical and numerical results are given for several examples of simplified geometry. Experiments using Tetra-hydro-furan hydrate sediments were carried out in our laboratory to check the theory. By comparison, the theoretical, numerical and experimental results on the evolution of dissociation fronts and temperature in the sediment are found to be in good agreement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent experimental works devoted to the phenomena of mixing observed at metallic multilayers Ni/Si irradiated by swift heavy ions irradiations make it necessary to revisit the insensibility of crystalline Si under huge electronic excitations. Knowing that Ni is an insensitive material, such observed mixing would exist only if Si is a sensitive material. In order to extend the study of swift heavy ion effects to semiconductor materials, the experimental results obtained in bulk silicon have been analyzed within the framework of the inelastic thermal spike model. Provided the quenching of a boiling ( or vapor) phase is taken as the criterion of amorphization, the calculations with an electron-phonon coupling constant g(300 K) = 1.8 x 10(12) W/cm(3)/K and an electronic diffusivity D-e(300 K) = 80 cm(2)/s nicely reproduce the size of observed amorphous tracks as well as the electronic energy loss threshold value for their creation, assuming that they result from the quenching of the appearance of a boiling phase along the ion path. Using these parameters for Si in the case of a Ni/Si multilayer, the mixing observed experimentally can be well simulated by the inelastic thermal spike model extended to multilayers, assuming that this occurs in the molten phase created at the Ni interface by energy transfer from Si. (C) 2009 Elsevier B. V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single-crystalline spinel (MgAl2O4) specimens were implanted with helium ions of 100 keV at three successively increasing fluences of (0.5, 2.0 and 8.0) x 10(16) ions/cm(2) at room temperature. The specimens were subsequently annealed in vacuum at different temperatures ranging from 500 to 1100 degrees C. Different techniques, including Fourier transformed infrared spectroscopy (FTIR), thermal desorption spectrometry (TDS), atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to investigate the specimens, It was found that the absorbance peak in the FTIR due to the stretching vibration of the Al-O bond shifts to smaller wave numbers with increasing fluence, shifting back to larger wave numbers with an increase of annealing temperature. The absorbance peak shift has a linear relationship with the fluence increase in the as-implanted state, while it does not have a linear relationship with the fluence increase after the annealing process. Surface deformation occurred in the specimens implanted with fluences of 2.0 and 8.0 x 10(16) ions/cm(2) in the annealing process. The phenomena described above can be attributed to differences in defect formation in the specimens. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A model experiment was done to clear the formation mechanism of protective layers during combustion of polypropylene (PP)/organically modified montmorillonite (OMMT) nanocomposites. The investigation was focused on the effects of annealing temperature on the structural changes and protective layer formation. The decomposition of OMMT and degradation of PP/OMMT nanocomposites were characterized by means of thermogravimetric analysis (TGA). The structural evolution and composition change in the surface region of PP/OMMT nanocomposites during heating were monitored by means of X-ray photoelectron spectroscopy (XPS), ATR-FTIR and field emission scanning electron microscopy (FESEM).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lanthanum zirconate (La2Zr2O7, LZ) powders with the addition of various Y2O3 contents for potential thermal barrier coatings (TBCs) application were synthesized by solid-state reaction. The structure evolution, sintering-resistance and thermophysical properties of the synthesized powders and sintered ceramics were systematically studied. X-ray diffraction (XRD) results indicate that LZ containing 3-12 wt.% Y2O3 mainly keeps a pyrochlore-type structure, and two new phases of LaYO3 and Y0.18Zr0.82O1.91 are also detected. Raman spectra confirm that the higher the Y2O3 content, the easier is the formation of LaYO3.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structural evolution of an ice-quenched high-density polyethylene (HDPE) subjected to uniaxial tensile deformation at elevated temperatures was examined as a function of the imposed strains by means of combined synchrotron small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS) techniques. The data show that when stretching an isotropic sample with the spherulitic structure, intralamellar slipping of crystalline blocks was activated at small deformations, followed by a stress-induced fragmentation and recrystallization process yielding lamellar crystallites with their normal parallel to the stretching direction. Stretching of an isothermally crystallized HDPE sample at 120 degrees C exhibited changes of the SAXS diagram with strain similar to that observed for quenched HDPE elongated at room temperature, implying that the thermal stability of the crystal blocks composing the lamellae is only dependent on the crystallization temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structural evolution of a single-layer latex film during annealing was studied via grazing incidence ultrasmall-angle X-ray scattering (GIUSAXS) and atomic force microscopy (AFM). The latex particles were composed of a low-T-g (-54 degrees C) core (n-butylacrylate, 30 wt %) and a high-T-g (41 degrees C) shell (t-butylacrylate, 70 wt %) and had an overall diameter of about 500 nm. GIUSAXS data indicate that the q(y) scan at q(z) = 0.27 nm(-1) (out-of-plane scan) contains information about both the structure factor and the form factor. The GIUSAXS data on latex films annealed at various temperatures ranging from room temperature to 140 degrees C indicate that the structure of the latex thin film beneath the surface changed significantly. The evolution of the out-of-plane scan plot reveals the surface reconstruction of the film. Furthermore, we also followed the time-dependent behavior of structural evolution when the latex film was annealed at a relatively low temperature (60 degrees C) where restructuring within the film can be followed that cannot be detected by AFM, which detects only surface morphology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantitative studies on the evolution and dynamics of the deepwater area of Pearl River Mouth basin (PRMB) were carried out based on the latest geological and seismic data. The study area is generally in an extensional state during the Cenozoic. The major extension happened in the earlier syn-rift stages before 23 Ma and the extension after 23 Ma is negligible. Two rapid subsidence periods, 32-23 Ma and 5.3-2.6 Ma, are identified, which are related to the abrupt heat decay during margin breakup and the collision between the Philippine Sea plate and the Eurasian plate, respectively. The strongest crustal thinning in the Baiyun (sic) sag may trigger the syn-rift volcanism along the weak faulted belt around the sag. The Cenozoic tectonic evolution of the study area could be divided into five stages: rifting (similar to 50-40 Ma), rift-drift transition (similar to 40-32 Ma), early post-breakup (similar to 32-23 Ma), thermal subsidence (similar to 23-5.3 Ma) and neotectonic movement (similar to 5.3-0 Ma).