149 resultados para surface plasmon wave
Resumo:
High-quality and high-resistivity GaN films were grown on (0001) sapphire face by metal-organic vapour phase epitaxy. To measure the surface acoustic wave properties accurately, we deposited metallized interdigital transducers on the GaN surface. The acoustic surface wave velocity and electromechanical coupling coefficient were measured, respectively, to be 5667 m/s and 1.9% by the pulse method.
Resumo:
A pure surface plasmon polariton (SPP) model predicted that the SPP excitation in a slit-groove structure at metallodielectric interfaces exhibits an intricate dependence on the groove width P. Lalanne et al. [Phys. Rev. Lett. 95, 263902 (2005); Nat. Phys. 2, 551 (2006)]. In this paper, we present a simple far-field experiment to test and validate this interesting theoretical prediction. The measurement results clearly demonstrate the predicted functional dependence of the SPP coupling efficiency on groove width, in good agreement with the SPP picture.
Resumo:
The simulation of a plasmonic very-small-aperture laser is demonstrated in this paper. It is an integration of the surface plasmon structure and very-small-aperture laser (VSAL). The numerical results demonstrate that the transmission field can be confined to a spot with subwavelength width in the far field (3.5 mu m far from the emitting surface), and the output power density can be enhanced over 30 times of the normal VSAL. Such a device can be useful in the application of a high resolution far-field scanning optical microscope.
Resumo:
A design of single-mode distributed feedback quantum cascade lasers (DFB-QCLs) with surface metal grating is described. A rigorous modal expansion theory is adopted to analyse the interaction between the waveguide mode and the surface plasmon wave for different grating parameters. A stable single-mode operation can be obtained in a wide range of grating depths and duty cycles. The single-mode operation of surface metal grating DFB-QCLs at room temperature for lambda = 8.5 mu m is demonstrated. The device shows a side-mode suppression ratio of above 20 dB. A linear tuning of wavelength with temperature indicates the stable single-mode operation without mode hopping.
Resumo:
Surface and bulk plasmon resonance of noble metal particles play an essential role in the multicolor photochromism of semiconductor systems containing noble metal particles, Here we examined several key parameters affecting surface plasmon resonance wavelength (SPRW) of Ag particles and investigated the relation between surface plasmon and photochromic reaction wavelength. From the transmission spectra of sandwiched (TiO2/Ag/TiO2) and overcoated (Ag/TiO2) films deposited on quartz substrates at room temperature by rf helicon magnetron sputtering, we demonstrated that the SPRW can be made tunable by changing the surrounding media and thickness of the metal layer. The coloration and bleaching in visible light region due to photochromism were clearly observed for the films inserted with a 0.55 nm Ag layer.
Resumo:
Thermal tuning of the localized surface plasmon resonance (LSPR) of Ag nanoparticles on a thermochromic thin film of VO2 was studied experimentally. The tuning is strongly temperature dependent and thermally reversible. The LSPR wavelength lambda(SPR) shifts to the blue with increasing temperature from 30 to 80 degrees C, and shifts back to the red as temperature decreases. A smart tuning is achievable on condition that the temperature is controlled in a stepwise manner. The tunable wavelength range depends on the particle size or the mass thickness of the metal nanoparticle film. Further, the tunability was found to be enhanced significantly when a layer of TiO2 was introduced to overcoat the Ag nanoparticles, yielding a marked sensitivity factor Delta lambda(SPR)/Delta n, of as large as 480 nm per refractive index unit (n) at the semiconductor phase of VO2.
Resumo:
Surface plasmon enhanced antireflection coatings for GaAs solar cells have been designed theoretically. The reflectance of double-layer antireflection coatings (ARCs) with different suspensions of Ag particles is calculated as a function of the wavelength according to the optical interference matrix and the Mie theory. The mean dielectric concept was adopted in the simulations. A significant reduction of reflectance in the spectral region from 300 to 400 nm was found to be beneficial for the design of ARCs. A new SiO_2/Ag-ZnS double-layer coating with better antireflection ability can be achieved if the particle volume fraction in ZnS is 1%-2%.
Resumo:
The formations of the surface plasmonpolariton (SPP) bands in metal/air/metal (MAM) sub-wavelength plasmonic grating waveguide (PGW) are proposed. The band gaps originating from the highly localized resonances inside the grooves can be simply estimated from the round trip phase condition. Due to the overlap of the localized SPPs between the neighboring grooves, a Bloch mode forms in the bandgap and can be engineered to build a very flat dispersion for slow light. A chirped PGW with groove depth varying is also demonstrated to trap light, which is validated by finite-difference time-domain (FDTD) simulations with both continuous and pulse excitations.
Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics
Resumo:
We theoretically demonstrate a polarization-independent nanopatterned ultra-thin metallic structure supporting short-range surface plasmon polariton (SRSPP) modes to improve the performance of organic solar cells. The physical mechanism and the mode distribution of the SRSPP excited in the cell device were analyzed, and reveal that the SRSPP-assisted broadband absorption enhancement peak could be tuned by tailoring the parameters of the nanopatterned metallic structure. Three-dimensional finite-difference time domain calculations show that this plasmonic structure can enhance the optical absorption of polymer-based photovoltaics by 39% to 112%, depending on the nature of the active layer (corresponding to an enhancement in short-circuit current density by 47% to 130%). These results are promising for the design of organic photovoltaics with enhanced performance.
Resumo:
Surface plasmon resonances of arrays of parallel copper nanowires, embedded in ion track-etched polycarbonate membranes, were investigated by systematic changes of nanowires’ topology and arrays area density. The extinction spectra exhibit two peaks which are attributed to interband transitions of Cu bulk metal and to a dipolar surface plasmon resonance, respectively. The resonances were investigated as a function of wire diameter and length, mean distance between adjacent wires, and angle of incidence of the light field with respect to the long wire axis. The dipolar peak shifts to larger wavelengths with increasing diameter and length, and diminishing mean distance between adjacent wires. Additionally, the shape effect on the dipolar peak is investigated.
Resumo:
In this paper, electrochemical surface plasmon resonance (SPR) method was first used to detect enzymatic reaction in bilayer lipid membrane (BLM) based on immobilizing horseradish peroxidase (HRP) in the BLMs supported by the redox polyaniline (PAn) film. By SPR kinetic curve in situ monitoring the redox transformation of PAn film resulted from the reaction between HRP and PAn, the enzymatic reaction of HRP with H2O2, was successfully analyzed by electrochemical SPR spectroscopy.
Nanoparticle-amplified Surface Plasmon Resonance Study of Protein Conformational Change at Interface
Resumo:
This paper reports the study of protein conformational change by Au nanoparticles (AUNPs)-amplified surface plasmon resonance (SPR) spectroscopy. Taking cytochrome c (Cyt c) as an example, this paper gives a detailed description of the construction of metal-protein-metal sandwich nanostructure consisting of an Au film underlayer, a cytochrome c intermediate layer and an AuNPs upper layer. The incorporation of AuNPs into SPR biosensing results in increased SPR sensitivity to protein conformational change as demonstrated by acid denaturation of Cyt c. It suggests the conformational change of surface-confined Cyt c leads to the distance and electromagnetic coupling variations of Au film-AuNPs.
Resumo:
A universal metal-molecule-metal sandwich architecture by the self-assembly of Ag nanoparticles (NPs) and Au NPs of various shapes interconnected with 4-aminothiophenol (4-ATP) molecules was presented. These Ag NPs/4-ATP/Au NPs sandwich structures were characterized by surface enhanced Raman scattering (SERS) using an off-surface plasmon resonance condition. Enhancement factors (EF) on the order of 10(8) for 9b(b(2)) vibration mode were observed for the 4-ATP self-assembled monolayers (SAMs) in such sandwich structures. The factors are 2 orders of magnitude larger than that on the monolayer of Au NPs of various shapes under similar condition. More importantly, remarkable increase in the intensity of b(2) vibrational modes, which is characteristic of the charge transfer (CT) behavior between metal NPs and 4-ATP molecules, was observed in these sandwich structures under 1064 nm excitation. The obtained EF on these sandwich structure for 9b(b(2)) is larger than that for 7a vibration mode by a factor of similar to 10(2), demonstrating the importance of the contribution of the CT mechanism and the CT behavior of metal contacts, which play a significant role in metal-molecule-metal nanosystems.
Resumo:
alpha-Actinin has been shown to be capable of interacting with some special membrane phospholipids directly, which is important for its function. In this study, hybrid bilayer membranes composed of negatively charged lipids are constructed on the surface plasmon resonance gold substrate and on the gold electrode, respectively, and the interaction between alpha-actinin and negatively charged lipids membrane is investigated by surface plasmon resonance, cyclic voltammetry and electrochemical impedance spectroscopy methods. alpha-Actinin is proved to be able to interact with the negatively charged lipids membrane directly. It can also insert at least partly into the membrane or lead to some defect or lesion in the membrane, which increase the permeability of the membrane. This study would bring some insight on the interaction between the alpha-actinin and the cell membranes in vivo.
Resumo:
Small molecules are difficult to detect by conventional surface plasmon resonance (SPR) spectroscopy due to the fact that the changes in the refractive index resulted from the binding process of small biomolecules are quite small. Here, we report a simple and effective method to detect small biomolecule using SPR spectroscopy and electrochemistry by catalyzed deposition of metal ions on SPR gold film. As an example, the ascorbic acid-mediated deposition of Ag on gold film was monitored by in situ SPR spectrum. The deposition of Ag atom on gold film resulted in an obvious decrease of depth in SPR angular scan curves of reflectance intensity and minimum reflectivity angle. The depth change of the SPR reflectance intensity and minimum reflectivity angle curves mainly relied on the amount of Ag atom deposited on gold film that can be controlled by the concentration of ascorbic acid. By monitoring the deposition of Ag atom on gold film, ascorbic acid was detected in the concentration range of 2 x 10(-5) M to 1 x 10(-3) M. After each of detections, the SPR sensor surface was completely regenerated by a potential step that stripped off the Ag atom. Furthermore, the regeneration process of the sensor surface provides the feasibility for detecting the concentration of ascorbic acid by electrochemical method.