98 resultados para relaxation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the exciton spin relaxation in a GaInNAs/GaAs quantum well. The recombination from free and localized excitons is resolved on the basis of an analysis of the photoluminescence characteristics. The free exciton spin relaxation time is measured to be 192 ps at 10 K, while the localized exciton spin relaxation time is one order of magnitude longer than that of the free exciton. The dependence of the free exciton spin relaxation time on the temperature above 50 K suggests that both the D'yakonov-Perel' and the Elliot-Yafet effects dominate the spin relaxation process. The temperature independence below 50 K is considered to be due to the spin exchange interaction. The ultralong spin relaxation time of the localized excitons is explained to be due to the influence of nonradiative deep centers. (c) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron-spin dynamics in InAs/GaAs heterostructures consisting of a single layer of InAs (1/3-1 monolayer) embedded in (001) and (311)A GaAs matrix was studied by means of time-resolved Kerr rotation spectroscopy. The spin-relaxation time of the submonolayer InAs samples is significantly enhanced, compared with that of the monolayer InAs sample. The electron-spin-relaxation time and the effective g factor in submonolayer samples were found to be strongly dependent on the photogenerated carrier density. The contribution from both the D'yakonov-Perel' mechanism and Bir-Aronov-Pikus mechanism are discussed to interpret the temperature dependence of spin decoherence at various carrier densities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the exciton spin dynamics in single InAs quantum dots (QDs) with different exciton fine structural splitting (FSS) by transient luminescence measurements. We have established the correlation between exciton spin relaxation rate and the energy splitting of the FSS when FSS is nonzero and found that the spin relaxation rate in QD increases with a slope of 8.8x10(-4) ns(-1) mu eV(-1). Theoretical analyses based on the phonon-assisted relaxations via the deformation potential give a reasonable interpretation of the experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the spin relaxation time of holes in an ultrathin neutral InAs monolayer (1.5 ML) and compare with that of electrons, using polarization-dependent time-resolved photoluminescence (TRPL) experiments. With excitation energies above the GaAs gap, we observe a rather slow relaxation of holes (tau(1h) = 196 +/- 17 ps) that is in the magnitude similar to electrons (tau(1e) = 354 +/- 32 ps) in this ultrathin sample. The results are in good agreement with earlier theoretical prediction, and the phonon scattering due to spin-orbit coupling is realized to play a dominant role in the carrier spin kinetics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spin dynamics in (Ga,Mn)As films grown on GaAs(001) was investigated by Time-resolved magneto-optical Kerr effect. The Kerr signal decay time of (Ga,Mn)As without external magnetic field applied was found to be several hundreds picoseconds, which suggested that photogenerated polarized holes and magnetic ions are coupled as a ferromagnetic system. Nonmonotonic temperature dependence of relaxation and dephasing (R&D) time and Larmor frequency manifests that Bir-Aronov-Pikus mechanism dominates the spin R&D time at low temperature, while D'yakonov-Perel mechanism dominates the spin R&D time at high temperature, and the crossover between the two regimes is Curie temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CaCu3Ti(4-x)Nb(x)O(12) (x = 0, 0.01, 0.08, 0.2) ceramics were fabricated by a conventional solid-state reaction method. The ceramics showed the body-centered cubic structure without any foreign phases and the grain size decreases with Nb doping. Two Debye-type relaxations were observed for the Nb-doped samples at low frequency and high frequency, respectively. The complex electric modulus analysis revealed that the surface layer, grains and grain boundaries contributed to the dielectric constant. The low-frequency dielectric constant relative to the surface layer decreased to a minimum and then increased with the dc bias voltage at 100 Hz, which were well explained in terms of a model containing two metal oxide semiconductors in series, confirming the surface layer in the ceramics. The shift voltage V-B corresponding to the minimal capacitance increased with increase of the composition x. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The alloy formation enthalpy and band structure of InGaN nanowires were studied by a combined approach of the valence-force field model, Monte Carlo simulation, and density-functional theory (DFT). For both random and ground-state structures of the coherent InGaN alloy, the nanowire configuration was found to be more favorable for the strain relaxation than the bulk alloy. We proposed an analytical formula for computing the band gap of any InGaN nanowires based on the results from the screened exchange hybrid DFT calculations, which in turn reveals a better band-gap tunability in ternary InGaN nanowires than the bulk alloy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron spin relaxation of charged excitons X+ and X2+ are investigated by time-resolved and polarization-resolved photoluminescence spectroscopy. For X+ configuration, the electron spin relaxation shows a typical decay curve induced by hyperfine interaction with nuclei, whereas for X2+ state the electron spin relaxation is affected not only by nuclei but also by electron-hole exchange interaction, leading to a power-law time dependence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two emission peaks were observed in the low temperature photoluminescence (LTPL) spectra of an InGaN/GaN multiple quantum well (MQW) structure before and after nanopillar fabrication. After nanopillar fabrication it is found that among the two peaks the longer wavelength peak exhibits a clear blue shift and has a much stronger enhancement in LTPL intensity than the shorter one. Combined with x-ray diffraction and spatially resolved cathodoluminescence analyses, the difference induced by nanopillar fabrication is ascribed to different strain relaxation states in the lower and upper quantum well layers. It is found that the lower QW layers of the as-grown MQW which causes the longer wavelength PL peak are more strained, while the upper ones are almost fully strain-relaxed. Therefore, the nanopillar fabrication induces much less strain relaxation in the upper part of the MQW than in the lower one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate theoretically the Dyakonov-Perel spin relaxation time by solving the eight-band Kane model and Poisson equation self-consistently. Our results show distinct behavior with the single-band model due to the anomalous spin-orbit interactions in narrow band-gap semiconductors, and agree well with the experiment values reported in recent experiment [K. L. Litvinenko et al., New J. Phys. 8, 49 (2006)]. We find a strong resonant enhancement of the spin relaxation time appears for spin align along [1 (1) over bar0] at a certain electron density at 4 K. This resonant peak is smeared out with increasing the temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using polarization-resolved photoluminescence spectra, we study the electron spin relaxation in single InAs quantum dots (QDs) with the configuration of positively charged excitons X+ (one electron, two holes). The spin relaxation rate of the hot electrons increases with the increasing energy of exciting photons. For electrons localized in QDs the spin relaxation is induced by hyperfine interaction with the nuclei. A rapid decrease of polarization degree with increasing temperature suggests that the spin relaxation mechanisms are mainly changed from the hyperfine interaction with nuclei into an electron-hole exchange interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Misfit defects in a 3C-SiC/Si (001) interface were investigated using a 200 kV high-resolution electron microscope with a point resolution of 0.194 nm. The [110] high-resolution electron microscopic images that do not directly reflect the crystal structure were transformed into the structure map through image deconvolution. Based on this analysis, four types of misfit dislocations at the 3C-SiC/Si (001) interface were determined. In turn, the strain relaxation mechanism was clarified through the generation of grow-in perfect misfit dislocations (including 90 degrees Lomer dislocations and 60 degrees shuffle dislocations) and 90 partial dislocations associated with stacking faults. (C) 2009 American Institute of Physics. [doi:10.1063/1.3234380]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The strain state of 570nm AlXGa1-xN layers grown on 600nm GaN template by metal organic chemical vapor deposition was studied using Rutherford backscattering (RBS)/channeling and triple-axis X-ray diffraction measurements. The results showed that the degree of relaxation (R) of AlxGa1-xN layers increased almost linearly when x less than or equal to 0.42 and reached to 70% when x = 0.42. Above 0.42, the value of R varied slowly and AI(x)Ga(1-x)N layers almost full relaxed when x = 1 (AIN). In this work the underlying GaN layer was in compressive strain, which resulted in the reduction of lattice misfit between GaN and AlxGa1-xN, and a 570nm AlxGa1-xN layer with the composition of about 0.16 might be grown on GaN coherently from the extrapolation. The different shape of (0004) diffraction peak was discussed to be related to the relaxation. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron spin relaxation induced by phonon-mediated s-d exchange interaction in a II-VI diluted magnetic semiconductor quantum dot is investigated theoretically. The electron-acoustic phonon interaction due to piezoelectric coupling and deformation potential is included. The resulting spin lifetime is typically on the order of microseconds. The effectiveness of the phonon-mediated spin-flip mechanism increases with increasing Mn concentration, electron spin splitting, vertical confining strength, and lateral diameter, while it shows nonmonotonic dependence on the magnetic field and temperature. An interesting finding is that the spin relaxation in a small quantum dot is suppressed for strong magnetic field and low Mn concentration at low temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comprehensive two-level numerical model is developed to describe carrier distribution in a quantum-dot laser. Light-emission spectra with different intraband relaxation rates (2ps, 7.5ps and 20ps) are calculated and analysed to investigate the influence of relaxation rates on performance of the quantum-dot laser. The results indicate that fast intraband relaxation favours not only the ground state single mode operation but also the higher injection efficiency.