70 resultados para quantum corrections to solitons
Resumo:
By extending our microscopic model on optical-phonon modes in quantum wells to one-dimensional (1D) quantum-well wires (QWW), the optical displacements and associated electrostatic potentials of optical-phonon modes in 1D QWW are calculated. The modes can be clearly divided into confined LO bulklike, TO bulklike modes, and extended interfacelike modes provided the bulk phonon dispersion is ignored. The character of each type of mode is illustrated with special attention to the interfacelike modes, which are hybrids of longitudinal- and transverse-optical waves from the corresponding bulk materials. Based on the numerical results, approximate analytical formulas for bulklike modes are presented. As in 2D wells, both the optical displacements and Frohlich potentials for the bulklike modes vanish at the interfaces. The finite dispersion of bulk phonons has a more pronounced effect on the 1D phonon modes because interfacelike modes show mixed characteristics of 2D interface and bulklike modes.
Resumo:
A realistic measurement setup for a system such system measured by a mesoscopie detector,is theoretically as a charged two-state (qubit) or multi-state quantum studied. To properly describe the measurement-induced back-action,a detailed-balance preserved quantum master equation treatment is developed. The established framework is applicable for arbitrary voltages and temperatures.
Resumo:
Within the framework of the pilot heavy-ion therapy facility at GSI equipped with an active beam delivery system of advanced raster scanning technique, a feasibility study on actively conformal heavy-ion irradiation to moving tumors has been experimentally conducted. Laterally, real-time corrections to the beam scanning parameters by the raster scanner, leading to an active beam tracing, compensate for the lateral motion of a target volume. Longitudinally, a mechanically driven wedge energy degrader (called depth scanner) is applied to adjust the beam energy so as to locate the high-dose Bragg peak of heavy ion beam to the slice under treatment for the moving target volume. It has been experimentally shown that compensations for lateral target motion by the raster scanner and longitudinal target shift by the depth scanner are feasible.
Resumo:
In the past decade density functional theory (DFT) has made its way from a peripheral position in quantum chemistry to center. Of course the often excellent accuracy of the DFT based methods has provided the primary driving force of this development. This dissertation is devoted to the study of physical and chemical properties of planetary materials by first-principle calculation. The concerned properties include the geometry, elastic constants and anisotropy. In the first chapter, we give a systematic introduction to theoretical background and review its progress. Development of quantum chemistry promotes the establishment of DFT. Theorem of Hohenberg-Kohn is the fundament of DFT and is developed to Kohn-Sham equation, which can be used to perform real calculations. Now, new corrections and extensions, together with developed exchange-correlation, have made DFT more accurate and suitable for larger systems. In the second chapter, we focus on the calculational methods and technical aspects of DFT. Although it is important to develop methods and program, external package are still often used. At the end of this chapter, we briefly some widely used simulation package and the application of DFT. In the third chapter, we begin to focus on properties of real materials by first principles calculation. We study a kind of minerals named Ca perovskite, investigate its possible structure and anisotropy at Earth’s mental condition. By understanding and predicting geo-physically important materials properties at extreme conditions, we can get the most accurate information to interpret seismic data in the context of likely geophysical processes.
Resumo:
We apply a scattering theory of nonperturbative quantum electrodynamics to study the photoelectron angular distributions (PADs) of a hydrogen atom irradiated by linearly polarized laser light. The calculated PADs show main lobes and jetlike structure. Previous experimental studies reveal that in a set of above-threshold-ionization peaks when the absorbed-photon number increases by one, the jet number also increases by one. Our study confirms this experimental observation. Our calculations further predict that in some cases three more jets may appear with just one-more-photon absorption. With consideration of laser-frequency change, one less jet may also appear with one-more-photon absorption. The jetlike structure of PADs is due to the maxima of generalized phased Bessel functions, not an indication of the quantum number of photoelectron angular momentum states.
Resumo:
Raman spectroscopy on single, living epithelial cells captured in a laser trap is shown to have diagnostic power over colorectal cancer. This new single-cell technology comprises three major components: primary culture processing of human tissue samples to produce single-cell suspensions, Raman detection on singly trapped cells, and diagnoses of the cells by artificial neural network classifications. it is compared with DNA flow cytometry for similarities and differences. Its advantages over tissue Raman spectroscopy are also discussed. In the actual construction of a diagnostic model for colorectal cancer, real patient data were taken to generate a training set of 320 Raman spectra and, a test set of 80. By incorporating outlier corrections to a conventional binary neural classifier, our network accomplished significantly better predictions than logistic regressions, with sensitivity improved from 77.5% to 86.3% and specificity improved from 81.3% to 86.3% for the training set and moderate improvements for the test set. Most important, the network approach enables a sensitivity map analysis to quantitate the relevance of each Raman band to the normal-to-cancer transform at the cell level. Our technique has direct clinic applications for diagnosing cancers and basic science potential in the study of cell dynamics of carcinogenesis. (C) 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Raman spectroscopy on single, living epithelial cells captured in a laser trap is shown to have diagnostic power over colorectal cancer. This new single-cell technology comprises three major components: primary culture processing of human tissue samples to produce single-cell suspensions, Raman detection on singly trapped cells, and diagnoses of the cells by artificial neural network classifications. it is compared with DNA flow cytometry for similarities and differences. Its advantages over tissue Raman spectroscopy are also discussed. In the actual construction of a diagnostic model for colorectal cancer, real patient data were taken to generate a training set of 320 Raman spectra and, a test set of 80. By incorporating outlier corrections to a conventional binary neural classifier, our network accomplished significantly better predictions than logistic regressions, with sensitivity improved from 77.5% to 86.3% and specificity improved from 81.3% to 86.3% for the training set and moderate improvements for the test set. Most important, the network approach enables a sensitivity map analysis to quantitate the relevance of each Raman band to the normal-to-cancer transform at the cell level. Our technique has direct clinic applications for diagnosing cancers and basic science potential in the study of cell dynamics of carcinogenesis. (C) 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
We have proposed a device, a superconducting-lead/quantum-dot/normal-lead system with an ac voltage applied on the gate of the quantum dot induced by a microwave, based on the one-parameter pump mechanism. It can generate a pure charge- or spin-pumped current. The direction of the charge current can be reversed by pushing the levels across the Fermi energy. A spin current arises when a magnetic field is applied on the quantum dot to split the two degenerate levels, and it can be reversed by reversing the applied magnetic field. The increase of temperature enhances these currents in certain parameter intervals and decreases them in other intervals. We can explain this interesting phenomenon in terms of the shrinkage of the superconducting gap and the concepts of photon-sideband and photon-assisted processes.
Resumo:
The influence of band bending and polarization on the valence band offset measured by x-ray photoelectron spectroscopy (XPS) is discussed, and a modification method based on a modified self-consistent calculation is proposed to eliminate the influence and thus increasing the precision of XPS. Considering the spontaneous polarization at the surfaces and interfaces and the different positions of Fermi levels at the surfaces, we compare the energy band structures of Al/Ga-polar AlN/GaN and N-polar GaN/AlN heterojunctions, and give corrections to the XPS-measured valence band offsets. Other AlN/GaN heterojunctions and the piezoelectric polarization are also introduced and discussed in this paper.
Resumo:
We estimate the two-photon exchange corrections to both proton and neutron electromagnetic physical observables in a relativistic light cone quark model At a fixed Q(2) the corrections are found to be small in magnitudes. but strongly dependent oil scattering angle Our results are comparable to those obtained from simple hadronic model in the medium momentum transfer region (C) 2009 Elsevier B V All rights reserved
Resumo:
Within the framework of second-order Rayleigh-Schrodinger perturbation theory, the polaronic correction to the first excited state energy of an electron in an quantum dot with anisotropic parabolic confinements is presented. Compared with isotropic confinements, anisotropic confinements will make the degeneracy of the excited states to be totally or partly lifted. On the basis of a three-dimensional Frohlich's Hamiltonian with anisotropic confinements, the first excited state properties in two-dimensional quantum dots as well as quantum wells and wires can also be easily obtained by taking special limits. Calculations show that the first excited polaronic effect can be considerable in small quantum dots.
Resumo:
We investigate the emission spectra of the semiconductor quantum well for few-cycle and sub-cycle pulse exciting. We find that Fano interference may induce third harmonic enhancement. Third harmonic enhancement varies with the magnitude and duration of the incident pulse, and may be enhanced by approximately one order of magnitude for the low intensity region of the sub-cycle incident pulse exciting.
Resumo:
We investigate the propagation of an arbitrary elliptically polarized few-cycle ultrashort laser pulse in resonant two-level quantum systems using an iterative predictor-corrector finite-difference time-domain method. It is shown that when the initial effective area is equal to 2 pi, the effective area will remain invariant during the course of propagation, and a complete Rabi oscillation can be achieved. However, for an elliptically polarized few-cycle ultrashort laser pulse, polarization conversion can occur. Eventually, the laser pulse will evolve into two separate circularly polarized laser pulses with opposite helicities.