70 resultados para power law model
Resumo:
The dielectric response of graded composites having general power-law-graded cylindrical inclusions under a uniform applied electric field is investigated. The dielectric profile of the cylindrical inclusions is modeled by the equation epsilon(i)(r)=c(b+r)(k) (where r is the radius of the cylindrical inclusions and c, b and k are parameters). Analytical solutions for the local electrical potentials are derived in terms of hypergeometric functions and the effective dielectric response of the graded composites is predicted in the dilute limit. Moreover, for a simple power-law dielectric profile epsilon(i)(r) = cr(k) and a linear dielectric profile epsilon(i)(r) = c(b + r), analytical expressions of the electrical potentials and the effective dielectric response are derived exactly from our results by taking the limits b -> 0 and k -> 1, respectively. For a higher concentration of inclusions, the effective dielectric response is estimated by an effective-medium approximation. In addition, we have discussed the effective response of graded cylindrical composites with a more complex dielectric profile of inclusion, epsilon(i)(r)=c(b+r)(k)e(beta r). (c) 2005 American Institute of Physics.
Resumo:
The effective dielectric response of graded spherical composites having general power-law gradient inclusions is investigated under a uniform applied electric field, where the dielectric gradation profile of the spherical inclusions is modeled by the equation epsilon(i) (r) = c(b+r)(k). Analytical solutions of the local electrical potentials are derived in terms of hyper-geometric function and the effective dielectric response of the graded composites is predicted in the dilute limit. From our result, the local potentials of graded spherical composites having both simple power-law dielectric profile epsilon(i)(r) = cr(k) and linear dielectric profile epsilon(i) (r) = c(b+r) are derived exactly by taking the limits b --> 0 and k --> 1, respectively. In the dilute limit, our exact result is used to test the validity of differential effective dipole approximation (DEDA) for estimating the effective response of graded spherical composites, and it is shown that the DEDA is in excellent agreement with exact result. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
The longitudinal structure function (LSF) and the transverse structure function (TSF) in isotropic turbulence are calculated using a vortex model. The vortex model is composed of the Rankine and Burgers vortices which have the exponential distributions in the vortex Reynolds number and vortex radii. This model exhibits a power law in the inertial range and satisfies the minimal condition of isotropy that the second-order exponent of the LSF in the inertial range is equal to that of the TSF. Also observed are differences between longitudinal and transverse structure functions caused by intermittency. These differences are related to their scaling differences which have been previously observed in experiments and numerical simulations.
Resumo:
In this work, a simple correlation, which incorporates the mixture velocity, drift velocity, and the correction factor of Farooqi and Richardson, was proposed to predict the void fraction of gas/non-Newtonian intermittent flow in upward inclined pipes. The correlation was based on 352 data points covering a wide range of flow rates for different CMC solutions at diverse angles. A good agreement was obtained between the predicted and experimental results. These results substantiated the general validity of the model presented for gas/non-Newtonian two-phase intermittent flows.
Resumo:
A new framework of non-local model for the strain energy density is proposed in this paper. The global strain energy density of the representative volume element is treated as a non-local variable and can be obtained through a special integral of the local strain energy density. The local strain energy density is assumed to be dependent on both the strain and the rotation-gradient. As a result of the non-local model, a new strain gradient theory is derived directly, in which the first and second strain gradients, as well as the triadic and tetradic stress, are introduced in the context of work conjugate. For power law hardening materials, size effects in thin metallic wire torsion and ultra-thin cantilever beam bend are investigated. It is found that the result predicted by the theoretical model is well consistent with the experimental data for the thin wire torsion. On the other hand, the calculation result for the micro-cantilever beam bend clearly shows the size effect.
Resumo:
More than 22 000 folding kinetic simulations were performed to study the temperature dependence of the distribution of first passage time (FPT) for the folding of an all-atom Go-like model of the second beta-hairpin fragment of protein G. We find that the mean FPT (MFPT) for folding has a U (or V)-shaped dependence on the temperature with a minimum at a characteristic optimal folding temperature T-opt*. The optimal folding temperature T-opt* is located between the thermodynamic folding transition temperature and the solidification temperature based on the Lindemann criterion for the solid. Both the T-opt* and the MFPT decrease when the energy bias gap against nonnative contacts increases. The high-order moments are nearly constant when the temperature is higher than T-opt* and start to diverge when the temperature is lower than T-opt*. The distribution of FPT is close to a log-normal-like distribution at T* greater than or equal to T-opt*. At even lower temperatures, the distribution starts to develop long power-law-like tails, indicating the non-self-averaging intermittent behavior of the folding dynamics. It is demonstrated that the distribution of FPT can also be calculated reliably from the derivative of the fraction not folded (or fraction folded), a measurable quantity by routine ensemble-averaged experimental techniques at dilute protein concentrations.
Resumo:
In this paper, we present a simple spring-block model for ocean internal waves based on the self-organized criticality (SOC). The oscillations of the water blocks in the model display power-law behavior with an exponent of -2 in the frequency domain, which is similar to the current and sea water temperature spectra in the actual ocean and the universal Garrett and Munk deep ocean internal wave model [Geophysical Fluid Dynamics 2(1972) 225; J. Geophys. REs. 80 (1975) 291]. The influence of the ratio of the driving force to the spring coefficient to SOC behaviors in the model is also discussed.
Resumo:
A numerical model is proposed to simulate fracture induced by the coalescence of numerous microcracks, in which the condition for coalescence between two randomly nucleated microcracks is determined in terms of a load-sharing principle. The results of the simulation show that, as the number density of nucleated microcracks increases, stochastic coalescence first occurs followed by a small fluctuation, and finally a newly nucleated microcrack triggers a cascade coalescence of microcracks resulting in catastrophic failure. The fracture profiles exhibit self-affine fractal characteristics with a universal roughness exponent, but the critical damage threshold is sensitive to details of the model. The spatiotemporal distribution of nucleated microcracks in the vicinity of critical failure follows a power-law behaviour, which implies that the microcrack system may evolve to a critical state.
Resumo:
Fracture owing to the coalescence of numerous microcracks can be described by a simple statistical model, where a coalescence event stochastically occurs as the number density of nucleated microcracks increases. Both numerical simulation and statistical analysis reveal that a microcrack coalescence process may display avalanche behavior and that the final failure is catastrophic. The cumulative distribution of coalescence events in the vicinity of critical fracture follows a power law and the fracture profile has self-affine fractal characteristic. Some macromechanical quantities may be traced back and extracted from the mesoscopic process based on the statistical analysis of coalescence events.
Resumo:
本文讨论了等离子体湍流对电子加速的两种模型:(1)假定在空间中存在一个空间均匀的等离子体湍流区,当具有一定初始分布的电子束通过此湍流区时,研究湍流场对电子束的加速过程;(2)在某一封闭的区域中,存在着具有一定初始分布和空间均匀的等离子体,当某种类型的等离子体波突然传入此等离子体区,然后考察此区中电子的加速过程。在这两种模型中,可能存在着某种电子消失机制。假定湍谱是幂指数形式,我们给出了不同类型湍流扩散系数的普遍形式。利用较简单的数学方法,求解了包括消失过程的一维准线性动力学方程,对于给定的初始分布,得出了分布函数的解析解,并给出了平均能量时间关系的表达式。另外,对于特定的湍谱指数,解出了当平行电场和湍流同时存在时的分布函数。最后,对所得结果进行了数值分析和讨论。
Resumo:
A new numerical model for transient flows of polymer solution in a circular bounded composite formation is presented in this paper. Typical curves of the wellbore transient pressure are yielded by FEM. The effects of non-Newtonian power-law index, mobility and boundary distance have been considered. It is found that for the mobility ratio larger than 1, which is favorable for the polymer flooding, the pressure derivative curve in log-log form rises up without any hollow. On the other hand, if the pressure derivative curve has a hollow and then is raised up, we say that the polymer flooding fails. Finally, the new model has been extended to more complicated boundary case.
Resumo:
The convective--diffusion equation is of primary importance in such fields as fluid dynamics and heat transfer hi the numerical methods solving the convective-diffusion equation, the finite volume method can use conveniently diversified grids (structured and unstructured grids) and is suitable for very complex geometry The disadvantage of FV methods compared to the finite difference method is that FV-methods of order higher than second are more difficult to develop in three-dimensional cases. The second-order central scheme (2cs) offers a good compromise among accuracy, simplicity and efficiency, however, it will produce oscillatory solutions when the grid Reynolds numbers are large and then very fine grids are required to obtain accurate solution. The simplest first-order upwind (IUW) scheme satisfies the convective boundedness criteria, however. Its numerical diffusion is large. The power-law scheme, QMCK and second-order upwind (2UW) schemes are also often used in some commercial codes. Their numerical accurate are roughly consistent with that of ZCS. Therefore, it is meaningful to offer higher-accurate three point FV scheme. In this paper, the numerical-value perturbational method suggested by Zhi Gao is used to develop an upwind and mixed FV scheme using any higher-order interpolation and second-order integration approximations, which is called perturbational finite volume (PFV) scheme. The PFV scheme uses the least nodes similar to the standard three-point schemes, namely, the number of the nodes needed equals to unity plus the face-number of the control volume. For instanc6, in the two-dimensional (2-D) case, only four nodes for the triangle grids and five nodes for the Cartesian grids are utilized, respectively. The PFV scheme is applied on a number of 1-D problems, 2~Dand 3-D flow model equations. Comparing with other standard three-point schemes, The PFV scheme has much smaller numerical diffusion than the first-order upwind (IUW) scheme, its numerical accuracy are also higher than the second-order central scheme (2CS), the power-law scheme (PLS), the QUICK scheme and the second-order upwind(ZUW) scheme.
Resumo:
We have investigated the optical properties of single CdSe/ZnS nanocrystals by conducting combinations of experiments on antibunching and photoluminescence intermittence under different experimental conditions. Based on photoluminescence in an antibunching experiment, we analyzed the emission lifetime of QDs by using stretched exponentials. The difference between the parameters obtained from average lifetimes and stretched exponents were analyzed by considering the effect of nonradiative emission. An Auger-assisted tunneling model was used to explain the power law exponents of off time distribution. The power law exponent under high excitation power was correlated with a higher Auger ionization rate. Using the parameters obtained from stretched exponential function and power law, the antibunching phenomena at different time and under different excitation intensity were analyzed.
Resumo:
The antibunching and blinking from a single CdSe/ZnS nanocrystal with an emission wavelength of 655 nm were investigated under different excitation powers. The decay process of the photoluminescence from nanocrystal was fitted into a stretched exponential, and the small lifetime and the small stretching exponent under a high excitation power were explained by using nonradiative multi-channel model. The probability of distributions for off-times from photoluminescence intermittence was fitted into the power law, and the power exponents were explained by using a tunneling model. For higher excitation power, the Auger-assisted tunneling model takes effect, where the tunneling rate increases and the observed lifetime decreases. For weak excitation power, the electron directly tunnels between the nanocrystal and trapping state without Auger assistance. The correlation between antibunching and blinking from the same nanocrystal was analyzed.
Resumo:
In our previous paper, the expanding cavity model (ECM) and Lame solution were used to obtain an analytical expression for the scale ratio between hardness (H) to reduced modulus (E-r) and unloading work (W-u) to total work (W-t) of indentation for elastic-perfectly plastic materials. In this paper, the more general work-hardening (linear and power-law) materials are studied. Our previous conclusions that this ratio depends mainly on the conical angle of indenter, holds not only for elastic perfectly-plastic materials, but also for work-hardening materials. These results were also verified by numerical simulations.