281 resultados para poly-3-hydroxybutyrate
Resumo:
The miscibility and crystallization behavior of poly(beta-hydroxybutyrate) (PHB)/poly(ethylene oxide) (PEO) blends were studied by differential scanning calorimetry(DSC) and polarizing microscopy (POM). It is found that the miscibility is related to the composition of the blends. When the PEO content is over 20 percent, the miscible blends turn into partially miscible and the phase separation can be observed with POM. The addition of the PEO influences not only the morphology of PHB crystals and the radial growth rate of spherulites, but also the cold crystallization temperature.
Resumo:
The overall isothermal crystallization kinetics and melting behavior of poly(beta-hydroxybutyrate) (PHB)/poly(vinyl acetate) (PVAc) blends were studied by using differential scanning calorimetry(DSC). The Avrami analysis indicates that the addition of PVAc into PHB results in the decrease in the overall crystallization rate of the PHB phase, but does not affect PHB's nucleation mechanism and geometry of crystal growth. The activation energy of the overall process of crystallization increases with the increasing PVAc content in the blends. The phenomenon of multiple melting endotherms is observed, which is caused by melting and recrystallization during the DSC heating run. (C) 1998 Elsevier Science Ltd. All rights reserved.
Compatibility and specific interactions in poly(beta-hydroxybutyrate) and poly(p-vinylphenol) blends
Resumo:
The miscibility and specific interactions in poly (beta-hydroxybutyrate) (PHB)/poly(p-vinylphenol) (PVPh) blends were studied by differential scanning calorimetry(DSC) , fourier transform infrared(FTIR) spectrometer and high resolution solid state C-13 NMR, A single composition-dependent glass transition temperatures were obtained by DSC which indicate the blends of PHB/PVPh were miscible in the melt state, The experimental glass transition temperatures were fitted quite well with those obtained from Couchman-Karasz equation. The FTIR study shows that the strong intermolecular hydrogen bonding exists in blends of PHB with strong proton acceptor and PVPh with strong proton donor and is the origin of its compatibility. The CPMAS C-13 NMR spectra also show that the strong hydrogen bonding exists in PHB/PVPh blends. From the T-1 rho(H) relaxation time it follows that the blends of PHB/PVPh(40/60, 20/80) studied are completely homogeneous on the scale of about 3.2 nm.
Resumo:
Hybrid bulk heterojunction solar cells based on blend of poly(3-hexylthiophene) (P3HT) and TiO2 nanotubes or dye(N719) modified TiO2 nanotubes were processed from solution and characterized to research the nature of organic/inorganic hybrid materials. Compared with the pristine polymer P3HT and TiO2 nanoparticles/P3HT solar cells, the TiO2 nanotubes/P3HT hybrid solar cells show obvious performance improvement, due to the formation of the bulk heterojunction and charge transport improvement. A further improvement in the device performance can be achieved by modifying TiO2 nanotube surface with a standard dye N719 which can play a role in the improvement of both the light absorption and charge dissociation. Compared with the non-modified TiO2 nanotubes solar cells, the modified ones have better power conversion efficiency under 100 mW/cm(2) illumination with 500W Xenon lamp. (C) 2008 Elsevier B. V. All rights reserved.
Resumo:
Poly(3,4-ethylenedioxythiopliene):poly(styrene sulfonate) (PEDOT:PSS) films have been electrochemically polymerized in situ on ITO glass substrate in boron trifluoride diethyl etherate electrolyte (BFEE). Cyclic voltammograms show good redox activity and stability of the PEDOT films. These films had been directly used to fabricate organic-inorganic hybrid solar cells with the structure of ITO/PEDOT/ZnO:MDMC-PPV/Al. The solar cells made of electrochemically polymerized films exhibit higher energy conversion efficiencies compared with that prepared by the spin-coating method, and the highest value is 0.33%. This in-situ electropolymerized method effectively simplifies fabricating procedures and may blaze a facile and economical route for producing high-efficiency solar cells.
Resumo:
本论文对完全生物降解聚(3—羟基丁酸酯)(PHB)和聚丙撑碳酸酯(PPC)共混体系进行了全面研究,目的是提高PHB的综合性能,加深对共混高聚物的基本物理问题的认识,进一步明晰高聚物的结构和性能之间的关系.1.在分析判断PPC的热降解机理的基础上,对PPC进行了封端处理,阻止了以端羟基回咬“解拉链”方式引起的热降解,增加了PPC热降解反应活化能,显著地提高了PPC的稳定性(提高30K以上).2.经热性能和形态结构等方面的表征,PHB/PPC共混体系为不相容体系,直接在PHB中加入PPC不能改善PHB的韧性和其它力学性能.3.PCL-PEG-PCL嵌段共聚物能够作为PHB/PPC的增容剂,在PHB/PPC共混体系中加入PCL-PEG-PCL三嵌段共聚物能显著减小分散相的平均尺寸.4.选用增塑剂对PPC进行增塑能够在很大范围内(80K)调节PPC的玻璃化转变温度,使PPC表现出弹性体的特性,拓宽了PPC的应用范围.5.增塑剂1,2丙二醇碳酸酯(PGC)对PHB有一定的增塑作用,但不能明显改善PHB的力学性能.6.增塑后的PPC是PHB的良好增韧剂,使PHB由脆性断裂转变为韧性断裂,最佳增韧效果可使PHB的抗冲击强度由36J/m增加到70PHB/30PPC/20PGC的307J/m,增加8倍.7.增塑后的PPC能够实现对PHB增韧,是增塑剂使得PPC在冲击实验条件下仍然保持弹性体的性质,由此引发空洞化、多重银纹和剪切屈服共存的增韧方式提高PHB的性能.
Resumo:
Poly (3-butylthiophene) (P3BT) is a much less studied conjugated polymer despite its high crystallizability and thus excellent electrical property. In this work, morphology of P3BT at different crystalline polymorphs and solvent/thermal induced phase transition between form I and U modifications have been intensively investigated by using optical microscopy, electron microscopy, differential scanning calorimetry, and X-ray diffraction. It is shown that a direct deposition from carbon disulfide (CS2) at fast evaporation results in P3BT crystals in form I modification, giving typical whiskerlike morphology. In contrast, low evaporation rate from CS, leads to formation of form II crystals with spherulitic morphology, which is so far scarcely observed in polythiophene.
Resumo:
The substantial crystallization suppression of poly(3-hexylthiophene) (P3HT) in the untreated P3HT:C60 composite film prepared from o-dichlorobenzene (ODCB) solution has been revealed. Besides, the effective conjugation length of P3HT in this composite has been nearly maintained to that in the solution. The different crystallization behaviors of P3HT in its composites with C60 and [6,6]-phenyl C-61 butyric acid methyl ester (PCBM) are mainly attributed to the relative solubility of C60 and PCBM with respect to P3HT in ODCB. The solution to overcome this disadvantage of chain conformation and crystallinity of P3HT in the composite with C60 is thus proposed and finalized by resorting to the addition of low volatile solvent with much higher solubility of C60 than P3HT into the main solvent used, so as P3HT can crystallize before C60 forms crystallites in the solution. The feasibility of this approach has been proven by the improved efficiency of devices based on composites of P3HT and the low cost C60 without resorting to post-treatments.
Resumo:
Nanoscale-phase separation of electron donor/acceptor blends is crucial for efficient charge generation and collection in Polymer bulk heterojunction photovoltaic cells. We investigated solvent vapor annealing effect of poly(3-hexylthiophene) (P3HT)/methanofullerene (PCBM) blend oil its morphology and optoelectronic properties. The organic solvents of choice for the treatment have a major effect oil the morphology of P3HT/PCBM blend and the device performance. Ultraviolet-visible absorption spectro,;copy shows that specific solvent vapor annealing can induce P3HT self-assembling to form well-ordered structure; and hence, file absorption in the red region and the hole transport are enhanced. The solvent that has a poor Solubility to PCBM Would cause large PCBM Clusters and result in a rough blend film. By combining an appropriate solvent vapor treatment and post-thermal annealing of the devices, the power conversion efficiency is enhanced.
Resumo:
Herein, an insulating fluorinated polyimide (F-PI) is utilized as an ultrathin buffer layer of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) in polymer light-emitting diodes to enhance the device performance. The selective solubility of F-PI in common solvents avoids typical intermixing interfacial problems during the sequential multilayer spin-coating process. Compared to the control device, the F-PI modification causes the luminous and power efficiencies of the devices to be increased by a factor of 1.1 and 4.7, respectively, along with almost 3-fold device lifetime enhancement. Photovoltaic measurement, single-hole devices, and X-ray photoelectron spectroscopy, are utilized to investigate the underlying, mechanisms, and it is found that the hole injection barrier is lowered owing to the interactions between the PEDOT:PSS and F-PI. The F-PI modified PEDOT:PSS layer demonstrates step-up ionization potential profiles from the intrinsic bulk PEDOT:PSS side toward the F-PI-modified PEDOT:PSS surface, which facilitate the hole injection.
Resumo:
Crystalline poly (3-hexylthiophene) (P3HT) nanofibrils are introduced into the P3HT: [6, 6]-phenyl C61-butyric acid methyl ester (PCBM) composite films via P3HT preaggregation in solution by adding a small amount of acetone, and the correlation of P3HT nanofibrils and the optoelectronic properties of P3HT:PCBM bulk heterojunction photovoltaic cells is investigated. It is found that the optical absorption and the hole transport or the resulted P3HT:PCBM composite films increase with the increase of the amount of P3HT nanofibrils due to the increased P3HT crystallinity and highly interconnected nanofibrillar P3HT networks. However, it is also found that high contents of crystalline P3HT nanofibrils may restrain PCBM molecules from demixing with the P3HT component that forms electron traps in the active layer. and hence reduce the charge collection efficiency. Small contents of P3HT nanofibrils not only improve the demixing between P3HT and PCBM components, but also enhance the hole transport via crystalline P3HT nanofibrillar networks, resulting in efficient charge collection.
Resumo:
Needle-like single crystals of poly(3-octylthiophene) (P3OT) have been prepared by tetrahydrofuran-vapor annealing. The morphology and structure of the crystals were characterized with optical microscopy, scanning electron microscopy, atomic force microscopy, transmission electron microscopy, and wide-angle X-ray diffraction. It is observed that the P3OT molecules are packed with the backbones parallel to the length axis of the crystal and the alkyl side chains perpendicular to the substrate. The field effect transistor based on the P3OT single crystal exhibited a charge carrier mobility of 1.54 x 10(-4) cm(2)/(Vs) and on/off current ratio of 37, and the molecular orientation of the crystal is ascribed to account for the device performance. The time-dependent morphological evolution demonstrated that the crystals underwent Ostwald ripening when annealed.
Resumo:
The authors report enhanced poly(3-hexylthiophene) (P3HT):methanofullerene (PCBM) bulk-heterojunction photovoltaic cells via 1,2-dichlorobenzene (DCB) vapor treatment and thermal annealing. DCB vapor treatment can induce P3HT self-organizing into ordered structure leading to enhanced absorption and high hole mobility. Further annealing the device at a high temperature, PCBM molecules begin to diffuse into aggregates and together with the ordered P3HT phase form bicontinuous pathways in the entire layer for efficient charge separation and transport. Compared to the control device that is merely annealed, optical absorption, short-circuit current, and power conversion efficiency are increased for the DCB vapor-treated cell.
Resumo:
Single crystals of head-to-tail poly(3-hexylthiophene)s have been grown through the method of isothermal solution crystallization. Electron diffraction in combination with powder X-ray diffraction revealed the crystal structure, a = 1.52 nm, b = 3.36 nm, c = 1.56 nm and alpha = beta = gamma = 90 degrees.