93 resultados para nonlinear sigma model
Resumo:
It is of utmost importance to understand the spallation behaviour of heterogeneous materials. In this paper, a driven nonlinear threshold model with stress fluctuation is presented to study the effects of microstructural heterogeneity on continuum damage evolution. The spallation behavior of heterogeneity material is analyzed with this model. The heterogeniety of mesoscopic units is characterized in terms of Weibull modulus m of strength distibution and stress fluctuation parameter k. At high stress, the maximum damage increases with m; while at low stress, the maximum damage decreases. In addition, for low stress, severe stress fluctuation causes higher damage; while for high stress, causes lower damage.
Resumo:
Both earthquake prediction and failure prediction of disordered brittle media are difficult and complicated problems and they might have something in common. In order to search for clues for earthquake prediction, the common features of failure in a simple nonlinear dynamical model resembling disordered brittle media are examined. It is found that the failure manifests evolution-induced catastrophe (EIC), i.e., the abrupt transition from globally stable (GS) accumulation of damage to catastrophic failure. A distinct feature is the significant uncertainty of catastrophe, called sample-specificity. Consequently, it is impossible to make a deterministic prediction macroscopically. This is similar to the question of predictability of earthquakes. However, our model shows that strong stress fluctuations may be an immediate precursor of catastrophic failure statistically. This might provide clues for earthquake forecasting.
Resumo:
This paper presents the Hill instability analysis of Tension Leg Platform (TLP) tether it, deep sea. The 2-D nonlinear beam model which is Undergoing Coupled axial and transverse vibrations, is applied. The governing equations are reduced to nonlinear Hill equation by use of the Galerkin's method and the modes superposition principle. The Hill instability charted Lip to large parameters is obtained. An important parameter M is defined and can he expressed as the functions of tether length, the platform surge and heave motion amplitudes. Some example studies are performed for various environmental conditions. The results demonstrate that the nonlinear coupling between the axial and transverse vibrations has a significant effect on the response of structure.. It needs to be considered for the accurate dynamic analysis of long TLP tether subjected to the combined platform surge and heave motions.
Resumo:
It is of utmost importance to understand the spallation behaviour of heterogeneous materials. In this paper, a driven nonlinear threshold model with stress fluctuation is presented to study the effects of microstructural heterogeneity on continuum damage evolution. The spallation behavior of heterogeneity material is analyzed with this model. The heterogeniety of mesoscopic units is characterized in terms of Weibull modulus m of strength distibution and stress fluctuation parameter k. At high stress, the maximum damage increases with m; while at low stress, the maximum damage decreases. In addition, for low stress, severe stress fluctuation causes higher damage; while for high stress, causes lower damage.
Resumo:
Waves generated by vertical seafloor movements are simulated by use of a fully nonlinear two-dimensional numerical wave tank. In the source region, the seafloor lifts to a designated height by a generation function. The numerical tests show that file linear theory is only valid for estimating the wave behaviors induced by the seafloor movements with a small amplitude, and the fully nonlinear numerical model should be adopted in the simulation of the wave generation by the large amplitude seafloor movements. Without the background surface waves, many numerical tests on the stable maximum elevations eta(max)(0) are carried out by both the linear theory and the fully nonlinear model. The results of two models are compared and analyzed. For the fully nonlinear model, the influences of the amplitudes and the horizontal lengths on eta(max)(0) are stronger than that of the characteristic duration times. Furthermore, results reveal that there are significant differences between the linear theory and the fully nonlinear model. When the influences of the background surface waves are considered, the corresponding numerical analyses reveal that with the fully nonlinear model the eta(max)(0) near-linearly varies with the wave amplitudes of the surface waves, and the eta(max)(0) has significant dependences on the wave lengths and the wave phases of the surface waves. In addition, the differences between the linear theory and the fully nonlinear model are still obvious, aid these differences are significantly affected by The wave parameters of the background surface waves, such as the wave amplitude, the wave length and the wave phase.
Resumo:
对于图像抖动产生偏移,提出了一种基于各向异性非线性扩散以及抖动估计的抖动消除算法。这种各向异性非线性扩散的模型由两项组成,即扩散项以及强制项。基本思想就是对于边界点以及图像内部的点分别进行处理。利用Newton-Raphson算法最小化抖动误差,估计出抖动偏移量。实验结果表明本文的抖动消除技术比其他方法的消除性能好,恢复效果接近于理想图像且性能稳定。
Resumo:
深入分析了轮式移动机器人的运动状态,建立了WMR路径偏差系统的非线性数学模型。应用小偏差线性化理论,将该多输入多输出非线性系统简化成一个单输入单输出线性系统。然后基于线性二次型调节器理论进行了系统最优控制器的设计,并针对该理论中加权矩阵Q与R难以确定的问题,从控制效果出发,采用自适应遗传算法对其进行了优化。实现了移动机器人对预定轨迹的满意鲁棒跟踪,同时满足了实时性要求。实验结果证明了该方法的正确性与实用性。
Resumo:
With the great development of Tianjing New Coastal District economy, people need more land to build and live. Land subsidence, which is caused by its special engineering geological conditions, has restricted the further development in the district. Soft soil consolidation is main factor of land subsidence ;thus , on the basis of consolidation theory, the paper make further study on soft soils one-dimension nonlinear consolidation which contains two parts:(1) the nonlinear consolidation of permeability coefficient and compressibility coefficient changing with time and depth, which means real one-dimension nonlinear consolidation;(2) the non-homogeneous consolidation of permeability coefficient and compressibility coefficient only changing with depth. Firstly, nonlinear characteristics of soft soils are elaborated. Hypoplastic theory is introduced to establish a modified soft soils nonlinear constitutive model; the nonlinear governing equation of compressibility coefficient is built, and the nonlinear characteristics of compressibility coefficient are analyzed. Secondly, Considering Load Fluctuation and soil thickness changing ,the consolidation characteristics of single layer is discussed in the paper; meanwhile, on the basis of the Davis and Raymond’s hypothesis and single layer nonlinear consolidation equation, the doubled-layer one-dimension nonlinear consolidation equation is also derived. The solution of the equation is obtained by analytical method, and the consolidation characteristics of doubled-layer soft soil nonlinear theory is also analyzed. Finally, based on assumption that permeability coefficient and compressibility coefficient is varying along depth, single layer soil one-dimension non-homogeneous consolidation differential equation is derived; and the approximate solution is obtained. Furthermore, the single layer non-homogeneous consolidation is extended to double layer non-homogeneous consolidation theory. By using parabolic differential scheme, the matrix equation is established; and the solution of the matrix equation is obtained by chase method. Consolidation characteristics of soil soft single (double) layer non-homogeneous consolidation theory and Terzaghi’s theory are also discussed.
Resumo:
This paper analyzes landsliding process by nonlinear theories, especially the influence mechanism of external factors (such as rainfall and groundwater) on slope evolution. The author investigates landslide as a consequence of the catastrophic slide of initially stationary or creeping slope triggered by a small perturbation. A fully catastrophe analysis is done for all possible scenarios when a continuous change is imposed to the control parameters. As the slip surface continues and erosion due to rainfall occurs, control parameters of the slip surface may evolve such that a previously stable slope may become unstable (e.g. catastrophe occurs), when a small perturbation is imposed. Thus the present analysis offers a plausible explanation to why slope failure occurs at a particular rainfall, which is not the largest in the history of the slope. It is found, by analysis on the nonlinear dynamical model of the evolution process of slope built, that the relationship between the action of external environment factors and the response of the slope system is complicatedly nonlinear. When the nonlinear action of slope itself is equivalent to the acting ability of external environment, the chaotic phenomenon appears in the evolution process of slope, and its route leading to chaos is realized with bifurcation of period-doublings. On the basis of displacement time series of the slope, a nonlinear dynamic model is set up by improved Backus generalized linear inversion theory in this paper. Due to the equivalence between autonomous gradient system and catastrophe model, a standard cusp catastrophe model can be obtained through variable substitution. The method is applied to displacement data of Huangci landslide and Wolongsi landslide, to show how slopes evolve before landsliding. There is convincing statistical evidence to believe that the nonlinear dynamic model can make satisfied prediction results. Most important of all, we find that there is a sudden fall of D, which indicates the occurrence of catastrophe (when D=0).
Resumo:
Based on the internal variable theory, a viscoelastic constitutive model of a highly deformable continuous medium is proposed. A set of second rank tensorial internal state variables corresponding to Biot's strain is introduced, and a nonlinear evolution
Resumo:
The joint time-frequency analysis method is adopted to study the nonlinear behavior varying with the instantaneous response for a class of S.D.O.F nonlinear system. A time-frequency masking operator, together with the conception of effective time-frequency region of the asymptotic signal are defined here. Based on these mathematical foundations, a so-called skeleton linear model (SLM) is constructed which has similar nonlinear characteristics with the nonlinear system. Two skeleton curves are deduced which can indicate the stiffness and damping in the nonlinear system. The relationship between the SLM and the nonlinear system, both parameters and solutions, is clarified. Based on this work a new identification technique of nonlinear systems using the nonstationary vibration data will be proposed through time-frequency filtering technique and wavelet transform in the following paper.
Resumo:
Adopting Yoshizawa's two-scale expansion technique, the fluctuating field is expanded around the isotropic field. The renormalization group method is applied for calculating the covariance of the fluctuating field at the lower order expansion. A nonlinear Reynolds stress model is derived and the turbulent constants inside are evaluated analytically. Compared with the two-scale direct interaction approximation analysis for turbulent shear flows proposed by Yoshizawa, the calculation is much more simple. The analytical model presented here is close to the Speziale model, which is widely applied in the numerical simulations for the complex turbulent flows.
Resumo:
In this paper, a logarithmic expression to describe the residual strength degradation process is developed in order to fatigue test results for normalized carbon steel. The definition and expression of fatigue damage due to symmetrical stress with a constant amplitude are also given. The expression of fatigue damage can also explain the nonlinear properties of fatigue damage. Furthermore, the fatigue damage of structures under random stress is analyzed, and an iterative formula to describe the fatigue damage process is deduced. Finally, an approximate method for evaluating the fatigue life of structures under repeated random stress blocking is presented through various calculation examples.
Resumo:
The Z-scan technique is useful for measuring the nonlinear refractive index of thin films. In conventional Z-scan theories, two effects are often ignored, namely the losses due to the internal multi-interference and the nonlinear absorption inside the sample. Therefore, the theories are restricted to relatively thick films. For films thinner than about 100 nm, the two effects become significant, and thus cannot be ignored. In the present work, we present a Z-scan theory that takes both effects into account. The proposed model calculation is suitable for optical nonlinear films of nanometric thickness. With numerical simulations, we demonstrate dramatic deviations from the conventional Z-scan calculations.