55 resultados para native language (L1)
Resumo:
The first 539 bases of mitochondrial DNA D-loop region of six Chinese native chicken breeds (Gallus gallus domesticus) were sequenced and compared to those of the red junglefowl (Gallus gallus), the gray junglefowl (Gallus sonneratii), the green junglefow
Resumo:
In this study, a detailed analysis of both previously published and new data was performed to determine whether complete, or almost complete, mtDNA sequences can resolve the long-debated issue of which Asian mtDNAs were founder sequences for the Native American mtDNA pool. Unfortunately, we now know that coding region data and their analysis are not without problems. To obtain and report reasonably correct sequences does not seem to be a trivial task, and to discriminate between Asian-and Native American mtDNA ancestries may be more complex than previously believed. It is essential to take into account the effects of mutational hot spots in both the control and coding regions, so that the number of apparent Native American mtDNA founder sequences is not erroneously inflated. As we report here, a careful analysis of all available data indicates that there is very little evidence that more than five founder mtDNA sequences entered Beringia before the Last Glacial Maximum and left their traces in the current Native American mtDNA pool.
Resumo:
In this study, random amplified polymorphic DNA (RAPD) analysis was used to estimate genetic diversity and relationship in 134 samples belonging to two native cattle breeds from the Yunnan province of China (DeHong cattle and DiQing cattle) and four intro
Resumo:
Le polymorphisme au sein de quatre regions du gene codant pour la proteine prion bovine (PRNP) confere la susceptibilite a l'encephalopathie bovine spongiforme (BSE). Ceux-ci comprennent un polymorphisme d'insertion/deletion (indel) de 23 pb dans le promoteur, un indel de 12 pb dans l'intron 1, un octapeptide repete ou un indel de 24 pb au sein du cadre de lecture, et un polymorphisme mononucleotidique (SNP) dans la region codante. Dans ce travail, les auteurs ont examine la frequence des genotypes, des alleles et des haplotypes pour ces indel au sein de 349 bovins d'origine chinoise, de meme que la sequence nucleotidique de ce gene chez 50 de ces animaux. Leurs resultats montrent que l'allele ayant la deletion de 12 pb et l'haplotype combinant la deletion de 23 pb et la deletion de 12 pb, lesquels ont ete suggeres comme etant importants pour la susceptibilite a la BSE, sont rares au sein des bovins du sud de la Chine. Une difference significative a ete observee entre les bovins affectes par la BSE et les bovins chinois sains pour ce qui est de l'indel de 12 pb. Au total, 14 SNP ont ete observes dans la region codante du gene PRNP chez les bovins chinois. Trois de ces SNP etaient associes a des changements d'acides amines (K3T, P54S et S154N). La substitution E211K qui a ete rapportee recemment chez un cas atypique de la BSE chez un bovin americain n'a pas ete detectee dans ce travail.
Resumo:
Mitochondrial DNA (mtDNA) of six breeds of native domestic pigs from Yunnan province, southwest China, and two wild boars obtained from Sichuan, China, and Vietnam was analyzed using 20 restriction endonucleases that recognize six nucleotides. Restriction maps were made by double-digestion methods and polymorphic sites were located on the map. According to their mtDNA restriction types, all the breeds were classified into six groups. Genetic distances among groups were calculated to define their phylogenetic relationships. The relationship between the Sichuan wild boar and domestic pigs is close, while the Vietnamese wild boar is relatively far from them, so the domestic pigs in southwest China are likely to have originated from a wild pig which distributed in west China. We compare our results with previous reports in literature and discuss the relationship among Chinese pigs, Japanese pigs, and European pigs. The mtDNA cleavage pattern of the Mingguang pig digested by EcoRV was identical to that of Duroc; mutations at the EcoRI site, detected in the mtDNA of two Dahe pigs, are the same as in the Vietnamese wild boar, suggesting that mutational hot spots exist in the mtDNA of pigs.
Resumo:
This paper studies the electronic structure and native defects intransparent conducting oxides CuScO2 and CuYO2 using the first-principle calculations. Some typical native copper-related and oxygen-related defects, such as vacancy, interstitials, and antisites in their relevant charge state are considered. The results of calculation show that, CuMO2 (M = Sc, Y) is impossible to shown-type conductivity ability. It finds that copper vacancy and oxygen interstitial have relatively low formation energy and they are the relevant defects in CuScO2 and CuYO2. Copper vacancy is the most efficient acceptor, and under O-rich condition oxygen antisite also becomes important acceptor and plays an important role in p-type conductivity.
Resumo:
Native point defects in the rutile TiO2 are studied via first-principles pseudopotential calculations. Except for the two antisite defects, all the native point defects have low formation energies. Under the Ti-rich growth condition, high concentrations of titanium interstitials and oxygen vacancies would form spontaneously in p-type samples; whereas high concentrations of titanium vacancies would form spontaneously in n-type samples regardless of the oxygen partial pressure. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Hall effect, Raman scattering, photoluminescence spectroscopy (PL), optical absorption (OA), mass spectroscopy, and X-ray diffraction have been used to study bulk ZnO single crystal grown by a closed chemical vapor transport method. The results indicate that shallow donor impurities (Ga and Al) are the dominant native defects responsible for n-type conduction of the ZnO single crystal. PL and OA results suggest that the as-grown and annealed ZnO samples with poor lattice perfection exhibit strong deep level green photoluminescence and weak ultraviolet luminescence. The deep level defect in as-grown ZnO is identified to be oxygen vacancy. After high-temperature annealing, the deep level photoluminescence is suppressed in ZnO crystal with good lattice perfection. In contrast, the photoluminescence is nearly unchanged or even enhanced in ZnO crystal with grain boundary or mosaic structure. This result indicates that a trapping effect of the defect exists at the grain boundary in ZnO single crystal. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
By employing first-principle total-energy calculations, a systematic study of the dopability of ZnS to be both n- and p-types compared with that of ZnO is carried out. We find that all the attempted acceptor dopants, group V substituting on the S lattice site and group I and IB on the Zn sites in ZnS, have lower ionization energies than the corresponding ones in ZnO. This can be accounted for by the fact that ZnS has relative higher valence band maximum than ZnO. Native ZnS is weak p-type under S-rich condition, as the abundant acceptor V-Zn has rather large ionization energy. Self-compensations by the formation of interstitial donors in group I and IB-doped p-type ZnS can be avoided when sample is prepared under S-rich condition. In terms of ionization energies, Li-Zn and N-S are the preferred acceptors in ZnS. Native n- type doping of ZnS is limited by the spontaneous formation of intrinsic V-Zn(2-); high efficient n-type doping with dopants is harder to achieve than in ZnO because of the readiness of forming native compensating centers and higher ionization energy of donors in ZnS. (C) 2009 American Institute of Physics. [DOI 10.1063/1.3103585]
Resumo:
A InGaAsP/InP self-aligned, native oxidized buried heterostructure (BH) distributed feedback (DFB) laser is proposed. It is as easy to process as the ridge waveguide DFB laser and has superior performance. The current aperture can be easily controlled without selective regrowth. The laser exhibits a low threshold of 5.0 mA with 36 dB side mode suppression ratio at the emission wavelength of 1.562 mu m. It emits in a single lobe with full width at half maximum angles of 33.6 degrees and 42.6 degrees for the lateral and vertical fields, respectively. Its beam is more circular than that of the as-grown BH laser because the lower refractive index of oxide compared to the as-grown layer and results in a larger lateral optical confinement. Its characteristic temperature (T-0) is 50 K at room temperature but increases in value at the higher temperature range. (C) 2000 American Institute of Physics. [S0003-6951(00)00812-3].
Resumo:
A novel idea of InAlAs native oxide utilized to replace the p-n-p-n thyristor blocking layer and improve the high-temperature performance of buried heterostructure InGaAsP-InP laser is first proposed and demonstrated. A characteristic temperature (T-0) of 50 K is achieved from an InA1As native oxide buried heterostructure (NOBH) InGaAsP-InP multiquantum-well laser with 1.5-mu m-wide diode leakage passage path. The threshold current and slope efficiency of NOBH laser changes from 5.6 mA, 0.23 mW/mA to 28 mA, 0.11 mW/mA with the operating temperature changing from 20 degrees C to 100 degrees C. It is comparable to conventional p-n reverse biased junction BH laser with minimized diode leakage current, and is much better than the buried ridge strip with proton implanted laterally confinement laser.
Resumo:
An InAlAs native oxide is used to replace the p-n reverse-biased junction in a conventional buried heterostructure InP-based laser. This technique reduces the number of regrowth steps and eliminates leakage current under high-temperature operation. The InAlAs native oxide buried heterostructure (NOBH) laser with strain-compensated InGaAsP/InP multiple quantum well active layers has a threshold current of 5.6 mA, a slope efficiency of 0.23 mW/mA, and a linear power up to 22.5 mW with a HR-coated facet. It exhibits single transverse mode with lasing wavelength at 1.532 mu m. A characteristic temperature (T-0) of 50 K is obtained from the NOBH laser with a nonoptimized oxide layer width. (C) 1998 American Institute of Physics. [S0003-6951(98)01352-7].
Resumo:
Hall effect, photoluminescence (PL), infrared absorption, deep level transient spectroscopy (DLTS), and Raman scattering have been used to study property and defects of ZnO single crystal grown by a chemical vapor transport method (CVT). As-grown ZnO is N type with free electron density Of 10(16)-10(17)cm(-3). It has a slight increase after 900 degrees C annealing in oxygen ambient. The DLTS measurement revealed four deep level defects with energy at 0.30eV, 0.50eV, 0.68eV and 0.90eV in the as-grown ZnO sample, respectively. After the high temperature annealing, only the 0.5eV defect survive and has a concentration increase. PL results of the as-grown and annealed ZnO indicate that the well-known green emission disappear after the annealing. The result suggests a correlation between the 0.68eV defect and the green PL peak. Results of P-doped ZnO were also compared with the undoped ZnO sample. The nature of the defects and their influence on the material property have been discussed.
Resumo:
This paper presents a wide tuning range CMOS frequency synthesizer for dual-band GPS receiver, which has been fabricated in a standard 0.18-um RF CMOS process. With a high Q on-chip inductor, the wide-band VCO shows a tuning range from 2 to 3.6GHz to cover 2.45GHz and 3.14GHz in case of process corner or temperature variation, with a current consumption varying accordingly from 0.8mA to 0.4mA, from a 1.8V supply voltage. The measurement results show that the whole frequency synthesizer costs a very low power consumption of 5.6mW working at L I band with in-band phase noise less than -82dBc/Hz and out-of-band phase noise about -112 dBc/Hz at 1MHz offset from a 3.142GHz carrier.