31 resultados para musical development in infancy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: It has been shown that mutations in at least four myotubularin family genes (MTM1, MTMR1, 2 and 13) are causative for human neuromuscular disorders. However, the pathway and regulative mechanism remain unknown. Methodology/Principal Findings: Here, we reported a new role for Mtmr8 in neuromuscular development of zebrafish. Firstly, we cloned and characterized zebrafish Mtmr8, and revealed the expression pattern predominantly in the eye field and somites during early somitogenesis. Using morpholino knockdown, then, we observed that loss-of-function of Mtmr8 led to defects in somitogenesis. Subsequently, the possible underlying mechanism and signal pathway were examined. We first checked the Akt phosphorylation, and observed an increase of Akt phosphorylation in the morphant embryos. Furthermore, we studied the PH/G domain function within Mtmr8. Although the PH/G domain deletion by itself did not result in embryonic defect, addition of PI3K inhibitor LY294002 did give a defective phenotype in the PH/G deletion morphants, indicating that the PH/G domain was essential for Mtmr8's function. Moreover, we investigated the cooperation of Mtmr8 with PI3K in actin filament modeling and muscle development, and found that both Mtmr8-MO1 and Mtmr8-MO2+LY294002 led to the disorganization of the actin cytoskeleton. In addition, we revealed a possible participation of Mtmr8 in the Hedgehog pathway, and cell transplantation experiments showed that Mtmr8 worked in a non-cell autonomous manner in actin modeling. Conclusion/Significance: The above data indicate that a conserved functional cooperation of Mtmr8 with PI3K regulates actin filament modeling and muscle development in zebrafish, and reveal a possible participation of Mtmr8 in the Hedgehog pathway. Therefore, this work provides a new clue to study the physiological function of MTM family members.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To investigate germline development and germ cell specification, we identified a Dazl homolog (CagDazl) from gynogenetic gibel carp (Carassius auratus gibelio). Its cDNA sequence and BAC clone sequence analyses revealed the genomic organization conservation and conserved synteny of the Dazl family members and their neighborhood genes among vertebrates, especially in fish. Moreover, a polyclonal antibody specific to CagDazl was produced and used to examine its expression and distribution throughout germline development at protein level. Firstly, ovary-specific expression pattern of CagDazl was confirmed in adult tissues by RT-PCR and Western blot. In addition, in situ hybridization and immunofluorescence localization demonstrated its specific expression in germ cells, and both its transcript and protein were localized to germ plasm. Then, co-localization of CagDazl and mitochondrial cloud was found, confirming that CagDazl transcript and its protein are germ plasm component and move via METRO pathway during oogenesis. Furthermore, the CagDazl is abundant and continuous throughout germline development and germ cell specification including primordial germ cell (PGC) formation, oogonium differentiation, oocyte development, and embryogenesis, and the dynamic distribution occurs at different development stages. The data suggest that maternal CagDazl might play an important role in gibel carp PGC formation. Therefore, CagDazl is a useful and specific marker for tracing germ plasm and germ cell development in the gynogenetic gibel carp. In addition, in comparison with previous studies in sexual reproduction species, the continuous and dynamic distribution of CagDazl protein in the germ plasm throughout the life cycle seems to have significant implication in sex evolution of vertebrates. J. Exp. Zool. (Mol. Deu. Euol.) 312B:855-871, 2009. (C) 2009 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Generating transgenic fish with desirable traits (e.g., rapid growth, larger size, etc.) for commercial use has been hampered by concerns for biosafety and competition if these fish are released into the environment. These obstacles may be overcome by producing transgenic fish that are sterile, possibly by inhibiting hormones related to reproduction. In vertebrates, synthesis and release of gonadotropin (GtH) and other reproductive hormones is mediated by gonadotropin-releasing hormone (GnRH). Recently two cDNA sequences encoding salmon-type GnRH (sGnRH) decapeptides were cloned from common carp (Cyprinus carpio). This study analyzed the expression of these two genes using real-time polymerase chain reaction (RT-PCR) in different tissues carp at varying developmental stages. Transcripts of both genes were detected in ovary and testis in mature and regressed, but not in juvenile carp. To evaluate the effects of sGnRH inhibition, the recombinant gene CAsGnRHpc-antisense, expressing antisense sGnRH RNA driven by a carp beta-actin promoter, was constructed. Blocking sGnRH expression using antisense sGnRH significantly decreased GtH in the blood of male transgenic carp. Furthermore, some antisense transgenic fish had no gonadal development and were completely sterile. These data demonstrate that sGnRH is important for GtH synthesis and development of reproductive organs in carp. Also, the antisense sGnRH strategy may prove effective in generating sterile transgenic fish, eliminating environmental concerns these fish may raise. (c) 2007 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Asian yellow pond turtle, Mauremys mutica (Cantor), is a potential aquaculture target in China owing to the higher values for food and remedy than other species of turtle. In this study, color and morphological changes of fertilized eggs were observed during embryogenesis, and the effects of incubation temperature on embryonic development were analyzed. Both calcium layer and membrane layer are thicker in the middle portion of egg-shell than that in the terminal portion, and become thinner after embryo hatching than before embryonic development. Significant change in the white spot and subsequent white ring on the eggshell occurs during embryonic development. Of five different incubation temperatures used to investigate the effects of incubation temperatures on embryonic development, 29.0 +/- 0.5 degrees C was optimal for embryo survival and development. Moreover, the incubation temperature of 33.0 +/- 0.5 degrees C was harmful effect to embryonic development. The data provide important and useful information for husbandry and management of the Asian yellow pond turtle. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anabaena sp. PCC; 7120 was mutagenized by transposon Tn5-1087b, generating a mutant whose heterocysts lack the envelope polysaccharide layer. The transposon was located between nucleotides 342 and 343 of alr0117, a 918 bp gene encoding a histidine kinase for a two-component regulatory system. Complementation of the mutant with a DNA fragment containing alr0117 and targeted inactivation of the gene confirmed that alr0117 is involved in heterocyst development. RT-PCR showed that alr0117 was constitutively expressed in the presence or absence of a combined-nitrogen source. hepA and patB, the two genes turned on during wild-type heterocyst development, were no longer activated in an alr0117-null mutant. The two-component signal transduction system involving alr0117 may control the formation of the envelope polysaccharide layer and certain late events essential to the function of heterocysts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phyllospadix iwatensis Makino and phyllospadix japonicus Makino have similar frunt morphology and anatomy.The rhomboid fruit of Japanese phyllospadix is dark brown in colour and is characterized by two arms bearing stiff inflected bristles which can act as an anchoring system. The fruit covering consists of a thin cuticular seed coat and pericarp remains mainly fibrous endocarp. In the groove region of the fruit.the cuticular seed coat and endocarp are replaced by nucellus cells with wall in growths and crushed pigment strands with lignified walls.these tissues appera to control the transfer of nutrients to developing seed.the seed is oval with a small embryo and a large hypocotyl. the embryo is straight and simple,with the plumule containing three leaf primordia and a pair of root primordia surrounded by a cotyledon.the hypocotyl has large vontral lobe containing central provascular tissue and two small dorsal lobes.the hypocotyl contains starch.lipid and protein.and acts as a nutrient store.the seed of P.iwatensis has a dormancy period of 2-6 weeks and germination eventually reaches-65%.but is not synchronized.during germination the leaves emerge first.and then after at least three young leaves have formed and abseised.the roots emerge,usually?6 months after the commencement of germination.Utilizaton of the nutrient reserves is initially from the perihpery of the hypocotyl and then progressively towards its centre.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development in the oxidation of olefins to ketones catalyzed by palladium compounds was reviewed. Some improved methods for the oxidation of olefins catalyzed by Wacker-type catalyst systems are also summarized. For this reaction, some new catalyst systems and the reaction mechanism are described. Emphasis has been given to the applications of Pd(I)/HPA(heteropoly acid), Pd(I)/FePc (iron phthalocyanine), Pd (I)/HQ (hydroquinone)/FePc, Pd (I)/HQ/HPA, Pd (I)/CuSO4/HPA catalyst systems in the oxidation of olefins to ketones; the application of Pd(I)/LCoNO2, PdCl2 (MeCN)(2)/CuCl, Pd(OAc)(2)/ pyridine, fluorous biphasic catalyst systems in the oxidation of olefins to ketones is also surveyed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isolation and characterization of androgenic hormone in decapod crustaceans depend on an effective bioassay of its action. In the present study, the effect of androgenic gland on ovarian development in the mud crab Scylla paramamosain was investigated with a view to develop a bioassay for androgenic hormone. Ovarian regression with degeneration of oocytes occurred in some female crabs implanted with androgenic gland in vivo. In vitro incubation of ovarian tissues at secondary vitellogenesis in extract of androgenic gland resulted in a significant decrease in amino acid uptake by the tissues. We propose that this inhibitory effect could be established as an effective bioassay for the isolation of androgenic hormone in the mud crab. (c) 2005 Published by Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To understand the molecular events of ovarian development in penaeid shrimp, RNA arbitrarily primed polymerase chain reaction (RAP-PCR) was used to identify differentially expressed genes during ovarian maturation in Metapenaeus ensis. From a screening of 700 clones in a cDNA library of the shrimp ovary by the products of RAP-PCR of different maturation stages, 91 fragments with differentially expressed pattern as revealed by dot-blot hybridization were isolated and sequenced. Forty-two of these fragments show significant sequence similarity to known gene products and the differentially expressed pattern of 10 putative genes were further characterized via Northern hybridization. Putative glyceraldehyde-3-phosphate dehydrogenase and arginine kinase are related to provision of energy for active cellular function in oocyte development. Translationally controlled tumor protein, actin, and keratin are related to the organization of cytoskeleton to accomplish growth and development of oocytes. High mobility group protein DSP1, heat shock protein 70, and nucleoside diphosphate kinase may act as repressors before the onset of ovarian maturation. Peptidyl-prolyl cis-trans isomerase and glutathione peroxidase are related to the stabilization of proteins and oocytes. This study provides new insights on the molecular events in the ovarian development in the shrimp.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seed rearing is an important part in large scale clam culture industry. Since the nutritional history affects early development in bivalve, the condition of larval nutrition plays a key role in successful seed rearing. So far, the molecular mechanism of nutrient uptake in bivalve larvae is unclear. As one of the important proteolytic enzymes, cathepsin B of several organisms has been reported to be involved in digestion. We intended to analyze whether cathepsin B is involved in larval nutrient metabolism in the economic bivalve, clam Meretrix meretrix. The full length of M. meretrix cathepsin B (MmeCB) cDNA was cloned, which is 1647 bp with an open reading frame of 1014 bp. The deduced amino acid sequence encoded a preproenzyme of 337 residues with Cys-114, His-282 and Asn-302 composing cathepsin B activity center. The temporal and spatial expressions of MmeCB mRNA were examined from trochophore to post larva stages by whole mount in situ hybridization. In trochophore stage, no detectable signal was found. In the later three stages, MmeCB mRNA was detected in the digestive gland, suggesting a possible role of MmeCB in digestion. Moreover, MmeCB mRNA was also observed in the epidermal cells in D-veligers. Cathepsin B specific inhibitor (CA074 methyl ester) was applied to block the activity of cathepsin B in unfed larvae. The average shell lengths of treated larvae were smaller than that in control groups. The results of mRNA epidermal distribution and inhibitor treatment in D-veligers indicated that MmeCB may be also associated with other pathway of nutrient metabolism in larval epidermis. The overall results in this paper revealed that MmeCB might play a role in larval nutrient metabolism. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ovary of triploid shrimp Fenneropenaeus chinensis was apparently impaired compared to that of the diploid shrimp at the same age. Therefore triploid shrimp ovary is possible to be taken as a model to understand the mechanism of ovary development of shrimp compared to that of the ovary of diploid shrimp at the same age. In the present study, a suppression subtractive hybridization (SSH) technique was applied to identify differentially expressed genes in the ovary between diploid and triploid shrimp. For the forward library (RNA from the ovary of triploid shrimp as the tester), 54 genes were identified. For the reverse library (RNA from the ovary of diploid shrimp as the tester), 16 genes were identified. The identified genes encoded proteins with multiple functions, including extracellular matrix components, cytoskeleton, cell growth and death, metabolism, genetic information processing, signal transduction/transport or immunity related proteins. Eleven differentially expressed genes were selected to be confirmed in the ovaries of triploid and diploid shrimp by semi-quantitative RT-PCR. Genes encoding spermatogonial stem-cell renewal factor, cytochrome c oxidase subunits I and II, clottable protein, antimicrobial peptide and transposase showed up-regulated expressions in the ovary of triploid shrimp. Genes encoding tubulin, cellular apoptosis susceptibility protein, farnesoic acid O-methyltransferase, thrombospondin and heat shock protein 90 genes showed higher expressions in the ovary of diploid shrimp. The differential expressions of the above genes are suggested to be related to the ovary development of shrimp. It will provide a new clue to uncover the molecular mechanisms underlying the ovarian development in penaeid shrimp. (C) 2010 Elsevier Inc. All rights reserved.