129 resultados para metallic conduction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The strain rate dependence of plastic deformation of Ce60Al15CU10Ni15 bulk metallic glass was studied by nanoindentation. Even though the ratio of room temperature to the glass transition temperature was very high (0.72) for this alloy, the plastic deformation was dominated by shear banding under nanoindentation. The alloy exhibited a critical loading rate dependent serrated flow feature. That is, with increasing loading rate, the alloy exhibited a transition from less prominent serrated flow to pronounced serrated flow during continuous loading but from serrated to smoother flow during stepped loading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic domain structure of Nd60Al10Fe20Co10 bulk metallic glass (BMG) has been studied by using magnetic-force microscopy. In the magnetic-force images it is shown that the exchange-interaction-type magnetic domains with a period of about 360 nm do exist in the BMG, which is believed to be associated with the appearance of hard-magnetic properties in this system. The existence of the large-scale domains demonstrates that the magnetic moments of a great deal of short-scale ordered atomic clusters in the BMG have been aligned by exchange coupling. Annealing at 715 K leads to partial crystallization of the BMG. However, the exchange coupling is stronger in the annealed sample, which is considered to arise from the increase of transition-metal concentration in the amorphous phase due to the precipitation of Nd crystalline phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plastic deformation behaviors of Zr65Al10Ni10CU15 and Zr52.5Al10Ni10Cu15Be12.5 bulk metallic glasses (BMGs) are studied by using the depth-sensing nanoindentation, microindentation and uniaxial compression. The Be-containing BMG exhibits a significantly improved overall plastic strain compared with the Be-free alloy during compressive tests. Both BMGs show a loading-rate-dependent serrated flow during nanoindentation measurements, but the Be-containing alloy exhibits a much lower critical loading rate for the disappearance of the serration than the Be-free BMG. The shear band patterns developed during plastic deformation are investigated by microindentation technique, wherein much higher shear band density is found in the Be-containing alloy than in the Be-free alloy, indicating an easier nucleation of shear bands in the former BMG. The difference in the plastic deformation behavior of the two BMGs can be explained by a free volume model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spherical nanoindentation tests were performed on Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass and pile-ups were observed around the indenter. A new modified expanding cavity model was developed to characterize the indentation deformation behavior of strain-hardening and pressure-dependent materials. By using this model, the representative stress-strain response of this bulk metallic glass to hardness and indentation in the elastic-plastic regime were obtained taking into consideration the effect of pile-up.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bulk metallic glasses of Nd65Al10Fe25-xCox (x=0,5,10) have been prepared in the form of 3 mm diam rods. Results of differential scanning calrimetry, dynamic mechanical thermal analysis (DMTA), and x-ray diffraction are presented for these alloys. It is shown that the glass transition and crystallization have been observed by DMTA. The reduced glass transition temperature of these glasses, defined as the ratio between the glass transition temperature T-g and the melting temperature T-l is in the range from 0.55 to 0.62. All these glasses have a large supercooled liquid region (SLR), ranging from 80 to 130 K. The high value of reduced glass transition temperature and wide SLR agree with their good glass formation ability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A kind of novel Ti-based composites was developed by introducing different amounts of carbon element to the Ti-50 Cu-23 Ni-20 Sn-7 bulk metallic glass forming alloys. The thermal stability and microstructural evolution of the composites were investigated. Room temperature compression tests reveal that the composite samples with 1% and 3% (mass fraction) carbon additions have higher fracture strength and obvious plastic strain of 2 195 MPa, 3.1% and 1 913 MPa, 1.3% respectively, compared with those of the corresponding carbon-free Ti-50 Ni-20 Cu-23 Sn-7 alloys. The deformation mechanisms of the composites with improved mechanical properties were also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal stability of nanocrystalline clusters, the phase evolution, and their effects on magnetic Propertieswere studied for as-cast Nd60Al10Fe20Co10 alloy using differential scanning calorimetry curves, x-ray diffraction patterns, scanning electron microscopy, and high-resolution transition electron microscopy. Thermomagnetic curves and hysteresis loops of the bulk metallic glass were measured during the annealing process. The high thermostability of the hardmagnetic properties of the samples observed is attributed to the stability of the nanocrystalline clusters upon annealing, while the slight enhancement in the magnetization is due to the precipitation of some Nd-rich metastable phases. The mechanism of thermostability of the nanocrystalline clusters and the formation of the metastable phases are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystallization, melting and structural evolution upon crystallization in Nd60Al10Fe20Co10 bulk metallic glass (BMG) are in situ investigated by x-ray diffraction with synchrotron radiation under high pressure. It is found that the crystallization is pressure promoted, while themelting is inhibited. The crystallization and melting process are also changed under high pressure. The features of the crystallization and melting under high pressure are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper performed a numerical simulation on temperature field evolution for the surface layer of a metallic alloy subjected to pulsed Nd:YAG laser treatment. The enthalpy method was adopted to solve the moving boundary problem, I.e. Stefan problem. Computational results were obtained to show the temperature field evolution. Effects of latent heat and mushy zone width on the temperature field were investigated. The results also show very high values of temperature gradient and cooling rate, which are typical characteristics during the solidification process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel multicomponent thick metallic glass coating has been synthesised by laser cladding. The maximum coating thickness was I mm. The clad cooling rate restrained the epitaxial growth of dendrites in the metallic glass coating. The metallic glass had high glass forming ability with a wide supercooled liquid region ranging from 59 to 70 K. The metallic glass coating also revealed high hardness and good corrosion resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An ultrasonic pulse-echo method was used to measure the transit time of longitudinal and transverse (10 MHz) elastic waves in a Nd60Al10Fe20Co10 bulk metallic glass (BMG). The measurements were carried out under hydrostatic pressure up to 0.5 GPa at room temperature. On the basis of experimental data for the sound velocities and density, the elastic moduli and Debye temperature of the BMG were derived as a function of pressure. Murnaghan's equation of state is obtained. The normal behaviour of the positive pressure dependence of the ultrasonic velocities was observed for this glass. Moreover, the compression curve, the elastic constants, and the Debye temperature of the BMG are calculated on the basis of the similarity between their physical properties in the glassy state and those in corresponding crystalline state. These results confirm qualitatively the theoretical predictions concerning the features of the microstructure and interatomic bonding in the Nd60Al10Fe20Co10 BMG.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glass transition and thermal stability of bulk Nd60Al10Fe20Co10 metallic glass were investigated by means of dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electronic microscopy (SEM). The glass transition temperature, not revealed by DSC, is alternatively determined by DMTA via storage modulus E' and loss modulus E" measurement to be 498 K at a heating rate of 0.167 K s (-1). The calculated reduced glass transition temperature (T-g/T-m) is 0.63. The large value of T-g/T-m of this alloy is consistent with its good glass-forming ability. The crystallization process of the metallic glass is concluded as follows: amorphous --> amorphous + metastable FeNdAl phase --> amorphous + primary delta-FeNdAl phase --> primary delta-phase + eutectic delta-phase + Nd3Al + Nd3Co. The appearance of hard magnetism in this alloy is ascribed to the presence of amorphous phase with highly relaxed structure. The hard magnetism disappeared after the eutectic crystallization of the amorphous phase. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plastic deformation behaviour of Zr52.5Al10Ni10Cu15Be12.5 and Mg65Cu25Gd10 bulk metallic glasses (BMGs) is studied by using the depth-sensing nanoindentation and microindentation. The subsurface plastic deformation zone of the BMGs is investigated using the bonded interface technique. Both the BMGs exhibit the serrated flow depending on the loading rate in the loading process of indentation. Slow indentation rates promote more conspicuous serrations, and rapid indentations suppress the serrated flow. Mg-based BMG shows a much higher critical loading rate for the disappearance of the serration than that in Zr-based BMG. The significant difference in the shear band pattern in the subsurface plastic deformation zone is responsible for the different deformation behaviour between the two BMGs. Increase of the loading rate can lead to the increase of the density of shear bands. However, there is no distinct change in the character of shear bands at the loading rate of as high as 1000 nm/s.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The instability of the crack tip in brittle Mg-based bulk metallic glass (BMG) is studied. The formation of various fractographic surfaces of the BMG is associated with the instability of the fluid meniscus, which is due to viscous fluid matter being present on the fracture process zone. Depending on the values of the wavelength of the initial perturbation of the fluid meniscus and the local stress intensity factor, different fracture surface profiles, i.e. a dimple-like structure, a periodic corrugation pattern and a pure mirror zone are formed. The fractographic evolution is significantly affected by the applied stress. A decreased fracture Surface roughness is observed under a low applied stress. An increased fracture surface roughness, which has frequently been reported by other researchers, is also observed in the present studies under a high applied stress. Unique fractographic features are attributed to the non-linear hyperelastic stiffening for less softening) mechanism. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoindentation simulations on a binary metallic glass were performed under various strain rates by using molecular dynamics. The rate-dependent serrated plastic flow was clearly observed, and the spatiotemporal behavior of its underlying irreversible atomic rearrangement was probed. Our findings clearly validate that the serration is a temporally inhomogeneous characteristic of such rearrangements and not directly dependent on the resultant shear-banding spatiality. The unique spatiotemporal distribution of shear banding during nanoindentation is highlighted in terms of the potential energy landscape (PEL) theory.