120 resultados para longitudinal gradient
Resumo:
In this paper, the strain gradient theory proposed by Chen and Wang (2001 a, 2002b) is used to analyze an interface crack tip field at micron scales. Numerical results show that at a distance much larger than the dislocation spacing the classical continuum plasticity is applicable; but the stress level with the strain gradient effect is significantly higher than that in classical plasticity immediately ahead of the crack tip. The singularity of stresses in the strain gradient theory is higher than that in HRR field and it slightly exceeds or equals to the square root singularity and has no relation with the material hardening exponents. Several kinds of interface crack fields are calculated and compared. The interface crack tip field between an elastic-plastic material and a rigid substrate is different from that between two elastic-plastic solids. This study provides explanations for the crack growth in materials by decohesion at the atomic scale.
Resumo:
The main factors influencing soil erosion include the net rain excess, the water depth, the velocity, the shear stress of overland flows, and the erosion-resisting capacity of soil. The laws of these factors varying with the slope gradient were investigated by using the kinematic wave theory. Furthermore, the critical slope gradient of erosion was driven. The analysis shows that the critical slope gradient of soil erosion is dependent on grain size, soil bulk density, surface roughness, runoff length, net rain excess, and the friction coefficient of soil, etc. The critical slope gradient has been estimated theoretically with its range between 41.5 degrees similar to 50 degrees.
Resumo:
The mode I plane strain crack tip field with strain gradient effects is presented in this paper based on a simplified strain gradient theory within the framework proposed by Acharya and Bassani. The theory retains the essential structure of the incremental version of the conventional J_2 deformation theory No higher-order stress is introduced and no extra boundary value conditions beyond the conventional ones are required. The strain gradient effects are considered in the constitutive relation only through the instantaneous tangent modulus. The strain gradient measures are included into the tangent modulus as internal parameters. Therefore the boundary value problem is the same as that in the conventional theory Two typical crack Problems are studied: (a) the crack tip field under the small scale yielding condition induced by a linear elastic mode-I K-field and (b) the complete field for a compact tension specimen. The calculated results clearly show that the stress level near the crack tip with strain gradient effects is considerable higher than that in the classical theory The singularity of the strain field near the crack tip is nearly equal to the square-root singularity and the singularity of the stress field is slightly greater than it. Consequently, the J-integral is no longer path independent and increases monotonically as the radius of the calculated circular contour decreases.
Resumo:
The strain gradient effect becomes significant when the size of fracture process zone around a crack tip is comparable to the intrinsic material length l, typically of the order of microns. Using the new strain gradient deformation theory given by Chen and Wang, the asymptotic fields near a crack tip in an elastic-plastic material with strain gradient effects are investigated. It is established that the dominant strain field is irrotational. For mode I plane stress crack tip asymptotic field, the stress asymptotic field and the couple stress asymptotic field can not exist simultaneously. In the stress dominated asymptotic field, the angular distributions of stresses are consistent with the classical plane stress HRR field; In the couple stress dominated asymptotic field, the angular distributions of couple stresses are consistent with that obtained by Huang et al. For mode II plane stress and plane strain crack tip asymptotic fields, only the stress-dominated asymptotic fields exist. The couple stress asymptotic field is less singular than the stress asymptotic fields. The stress asymptotic fields are the same as mode II plane stress and plane strain HRR fields, respectively. The increase in stresses is not observed in strain gradient plasticity for mode I and mode II, because the present theory is based only on the rotational gradient of deformation and the crack tip asymptotic fields are irrotational and dominated by the stretching gradient.
Resumo:
A new phenomenological deformation theory with strain gradient effects is proposed. This theory, which belongs to nonlinear elasticity, fits within the framework of general couple stress theory and involves a single material length scale l. In the present theory three rotational degrees of freedom omega(i) are introduced in addition to the conventional three translational degrees of freedom u(i). omega(i) has no direct dependence upon ui and is called the micro-rotation, i.e. the material rotation theta(i) plus the particle relative rotation. The strain energy density is assumed to only be a function of the strain tensor and the overall curvature tensor, which results in symmetric Cauchy stresses. Minimum potential principle is developed for the strain gradient deformation theory version. In the limit of vanishing 1, it reduces to the conventional counterparts: J(2) deformation theory. Equilibrium equations, constitutive relations and boundary conditions are given in details. Comparisons between the present theory and the theory proposed by Shizawa and Zbib (Shizawa, K., Zbib, H.M., 1999. A thermodynamical theory gradient elastoplasticity with dislocation density Censor: fundamentals. Int. J. Plast. 15, 899) are given. With the same hardening law as Fleck et al. (Fleck, N.A., Muller, G.H., Ashby, M.F., Hutchinson, JW., 1994 Strain gradient plasticity: theory and experiment. Acta Metall. Mater 42, 475), the new strain gradient deformation theory is used to investigate two typical examples, i.e. thin metallic wire torsion and ultra-thin metallic beam bend. The results are compared with those given by Fleck et al, 1994 and Stolken and Evans (Stolken, J.S., Evans, A.G., 1998. A microbend test method for measuring the plasticity length scale. Acta Mater. 46, 5109). In addition, it is explained for a unit cell that the overall curvature tensor produced by the overall rotation vector is the work conjugate of the overall couple stress tensor. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
In this paper, effect of strain gradient on adiabatic shear instability in particle reinforced metal matrix composites is investigated by making use of the strain gradient dependent constitutive equation developed by Dai et al. [9] and the linear perturbation analysis presented by Bai [10]. The results have shown that the onset of adiabatic shear instability in metal matrix composites reinforced with small particles is more prone to occur than in the composites reinforced with large particles. This means that the strain gradient provides a strong deriving force for onset of adiabatic shear instability in metal matrix composites.
Resumo:
A plane strain mode I crack tip field with strain gradient effects is investigated. A new strain gradient theory is used. An elastic-power law hardening strain gradient material is considered and two hardening laws, i.e. a separation law and an integration Law are used respectively. As for the material with the separation law hardening, the angular distributions of stresses are consistent with the HRR field, which differs from the stress results([19]); the angular distributions of couple stresses are the same as the couple stress results([19]). For the material with the integration law hardening, the stress field and the couple stress field can not exist simultaneously, which is the same as the conclusion([19]), but for the stress dominated field, the angular distributions of stresses are consistent with the HRR field; for the couple stress dominated field, the angular distributions of couple stresses are consistent with those in Ref. [19]. However, the increase in stresses is not observed in strain gradient plasticity because the present theory is based on the rotation gradient of the deformation only, while the crack tip field of mode I is dominated by the tension gradient, which will be shown in another paper.
Resumo:
The dynamic localization of saturated soil is investigated by considering the influence of higher strain gradient. It is shown that the strain gradient has a significant influence on the evolution of shear band in saturated soil and that the width of shear band is proportional to the square root of the strain gradient softening coefficient. The numerical simulation is processed to investigate the influences of shear strain gradient and other factors on the evolution of shear band.
Resumo:
An in situ method was developed to produce an Ni alloy composite coating reinforced by in situ reacted TiC particles with a gradient distribution, using one-step laser cladding with a pre-placed powder mixture on a 5CrMnMo steel substrate. Dispersed and ultra-fine TIC particles were formed in situ in the coating. Most. of the TiC particles, with a marked gradient distribution, were uniformly distributed within interdendritic regions because of the trapping effect of the advancing solid-liquid interface. In addition, the TiC-gamma-Ni interfaces generated in situ were found to be free from any deleterious surface reaction. Finally, the microhardness also showed a gradient variation, with the highest value of 1250 Hv0.2 and the wear properties of the coating were significantly enhanced.
Resumo:
Mode I steady-state crack growth is analyzed under plane strain conditions in small scale yielding. The elastic-plastic solid is characterized by the mechanism-based strain gradient (MSG) plasticity theory [J. Mech. Phys. Solids 47 (1999) 1239, J. Mech. Phys. Solids 48 (2000) 99]. The distributions of the normal separation stress and the effective stress along the plane ahead of the crack tip are computed using a special finite element method based on the steady-state fundamental relations and the MSG flow theory. The results show that during the steady-state crack growth, the normal separation stress on the plane ahead of the crack tip can achieve considerably high value within the MSG strain gradient sensitive zone. The results also show that the crack tip fields are insensitive to the cell size parameter in the MSG theory. Moreover, in the present research, the steady-state fracture toughness is computed by adopting the embedded process zone (EPZ) model. The results display that the steady-state fracture toughness strongly depends on the separation strength parameter of the EPZ model and the length scale parameter in the MSG theory. Furthermore, in order for the results of steady crack growth to be comparable, an approximate relation between the length scale parameters in the MSG theory and in the Fleck-Hutchinson strain gradient plasticity theory is obtained.
Resumo:
An infinite elastic solid containing a doubly periodic parallelogrammic array of cylindrical inclusions under longitudinal shear is studied. A rigorous and effective analytical method for exact solution is developed by using Eshelby's equivalent inclusion concept integrated with the new results from the doubly quasi-periodic Riemann boundary value problems. Numerical results show the dependence of the stress concentrations in such heterogeneous materials on the periodic microstructure parameters. The overall longitudinal shear modulus of composites with periodic distributed fibers is also studied. Several problems of practical importance, such as those of doubly periodic holes or rigid inclusions, singly periodic inclusions and single inclusion, are solved or resolved as special cases. The present method can provide benchmark results for other numerical and approximate methods. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The anisotropy and gradient of the elastic modulus and the hardness of teeth were investigated by means of instrumented indentation method. Such properties are attributed to the unique microstructures of teeth based on scanning electron microscopic analysis. By comparing the relationship between the ratio of hardness to the reduced elastic modulus and the ratio of elastic unloading work to the total work of teeth in course of indentation to those of other materials, we found that the material behaviors of teeth display metal-like characteristics rather than ceramics as considered traditionally. These material behaviors and relevant functions are discussed briefly.
Resumo:
The close form solutions of deflections and curvatures for a film-substrate composite structure with the presence of gradient stress are derived. With the definition of more precise kinematic assumption, the effect of axial loading due to residual gradient stress is incorporated in the governing equation. The curvature of film-substrate with the presence of gradient stress is shown to be nonuniform when the axial loading is nonzero. When the axial loading is zero, the curvature expressions of some structures derived in this paper recover the previous ones which assume the uniform curvature. Because residual gradient stress results in both moment and axial loading inside the film-substrate composite structure, measuring both the deflection and curvature is proposed as a safe way to uniquely determine the residual stress state inside a film-substrate composite structure with the presence of gradient stress.
Resumo:
The experimental investigation of the thermocapillary drop migration in a vertical temperature gradient uns performed on ground. Silicon oil and pure soybean oil were used as experimental medium in drops and as continuous phases, respectively, in the present experiment. The drop migration, under the combined effects of buoyancy: and thermocapillarity, was studied for middle Reynolds numbers in order of magnitude O(10(1)). The drop migration velocities depending on drop diameters were obtained. The present experimental results show relatively small migration velocity in comparison with the one suggested by Young et nl. for linear theory of small Reynolds number. An example of flow patterns inside the drop was observed by PIV method.
Resumo:
A ground-experiment study on the motions of solid particles in liquid media with vertical temperature gradient is performed in this paper. The movement of solid spheres toward the heating end of a close cell is observed. The behavior and features of the motions examined are quite similar to thermocapillary migration of bubbles and drops in a liquid. The motion velocities of particles measured are about 10(-3) to 10(-4) mm\s. The velocity is compared with the velocity of particles floated in two liquid media. The physical mechanism of motion is explored.