28 resultados para fresh cut
Resumo:
We studied in the laboratory the population growth rates of four cladocerans fed both with decomposed Microcystis aeruginosa and with a mixture of fresh colonial M. aeruginosa and Scenedesmus obliquus. The neonates of Diqphanosoma brachyurum and Daphnia carinata were able to develop into adults when they were fed with <64mum decomposed M. aeruginosa, while those of Moina micrura could not use decomposed M. aeruginosa. The population growth rate of the largest species, D. carinata, was less affected by the presence of fresh colonial M. aeruginosa than the other three species. D. carinata obtained the highest growth rate at a biomass level of 10 mg L-1 fresh colonial M. aeruginosa, indicating that, to some extent, it can use colonial M. aeruginosa at a size range of 64-112mum. The population growth rate of M. micrura was negatively correlated with fresh colonial M. aeruginosa within a range of 10-100 mg L-1. The population growth rates of D. brachyurum and Ceriodaphnia cornuta were remarkably decreased by fresh colonial M. aeruginosa, although no significant difference was found within the M. aeruginosa biomass range of 10-100 mg L-1 for either cladoceran. At a biomass level of 50 mg L-1 M. aeruginosa, the population growth rates of the four cladocerans positively correlated with S. obliquus biomass within a range of 0.1-5.0 mg L-1. Our results indicate that the zooplankton community under bloom condition is shaped by the quantity of both M. aeruginosa and other edible algae.
Resumo:
Toxic cyanobacteria (blue-green algae) waterblooms have been found in several Chinese water bodies since studies began there in 1984. Waterbloom samples for this study contained Anabaena circinalis, Microcystis aeruginosa and Oscillatoria sp. Only those waterblooms dominated by Microcystis aeruginosa were toxic by the intraperitoneal (i.p.) mouse bioassay. Signs of poisoning were the same as with known hepatotoxic cyclic peptide microcystins. One toxic fraction was isolated from each Microcystis aeruginosa sample. Two hepatotoxic peptides were purified from each of the fractions by high-performance liquid chromatography and identified by amino acid analysis followed by low and high resolution fast-atom bombardment mass spectrometry (FAB-MS). LD50 i.p. mouse values for the two toxins were 245-mu-g/kg (Toxin A) and 53-mu-g/g (Toxin B). Toxin content in the cells was 0.03 to 3.95 mg/g (Toxin A) and 0.18 to 3.33 mg/kg (Toxin B). The amino acid composition of Toxin A was alanine [1], arginine [2], glutamic acid [1] and beta-methylaspartic acid [1]; for Toxin B it was the same, except one of the arginines was replaced with a leucine. Low- and high-resolution FAB-MS showed that the molecular weights were 1,037 m/z (Toxin A) and 994 m/z (Toxin B), with formulas of C49H76O12N13 (Toxin A) and C49H75O12N10 (Toxin B). It was concluded that Toxin A is microcystin-RR and Toxin B is microcystin-LR, both known cyclic heptapeptide hepatotoxins isolated from cyanobacteria in other parts of the world. Sodium borohydride reduction of microcystin-RR yielded dihydro-microcystin-RR (m/z = 1,039), an important intermediate in the preparation of tritium-labeled toxin for metabolism and fate studies.
Resumo:
Top-illuminated metamorphic InGaAs p-i-n photodetectors (PDs) with 50% cut-off wavelength of 1.75 mu m at room temperature are fabricated on GaAs substrates. The PDs are grown by a solid-source molecular beam epitaxy system. The large lattice mismatch strain is accommodated by growth of a linearly graded buffer layer to create a high quality virtual InP substrate indium content in the metamorphic buffer layer linearly changes from 2% to 60%. The dark current densities are typically 5 x 10(-6) A/cm(2) at 0 V bias and 2.24 x 10(-4) A/cm(2) at a reverse bias of 5 V. At a wavelength of 1.55 mu m, the PDs have an optical responsivity of 0.48 A/W, a linear photoresponse up to 5 mW optical power at -4 V bias. The measured -3 dB bandwidth of a 32 mu m diameter device is 7 GHz. This work proves that InGaAs buffer layers grown by solid source MBE are promising candidates for GaAs-based long wavelength devices.
Resumo:
The surface sites of supported molybdenum carbide catalyst derived from different synthesis stages have been studied by in situ FT-IR spectroscopy using CO as the probe molecule. Adsorbed CO on the reduced passivated Mo2C/Al2O3 catalyst gives a main band at 2180 cm(-1), which can be assigned to linearly adsorbed CO on Mo4+ sites. The IR results show that the surface of reduced passivated sample is dominated by molybdenum oxycarbide. However, a characteristic IR band at 2054 cm-1 was observed for the adsorbed CO on MoO3/Al2O3 carburized with CH4/H-2 mixture at 1033 K (fresh Mo2C/Al2O3), which can be assigned to linearly adsorbed CO on Modelta+ (0 < delta < 2) sites Of Mo2C/Al2O3, Unlike adsorbed CO on reduced passivated Mo2C/Al2O3 catalyst, the IR spectra of adsorbed CO on fresh Mo2C/Al2O3 shows similarity to that on some of the group VIII metals (such as Pt and Pd), suggesting that fresh carbide resembles noble metals. To study the stability Of Mo2C catalyst during H-2 treatment and find proper conditions to remove the deposited carbon species, H-2 treatment of fresh Mo2C/Al2O3 catalyst at different temperatures was conducted. Partial amounts of carbon atoms in Mo2C along with some surface-deposited carbon species can be removed by the H, treatment even at 450 K. Both the surface-deposited carbon species and carbon atoms in carbide can be extensively removed at temperatures above 873 K.
Resumo:
The pigments in Laminaria japonica was extracted with six organic solvents and analyzed in spectroscopy analysis. The extractions conditions were screened by an orthogonal test and the quantity of extracted pigments was determined spectroscopically. The results show that: (1) among the six organic solvents, acetone was the most effective one for the extraction; (2) the optimum extraction conditions were as follows: the ratio of S/M (solvent volume/ material weight) was 30 ml/g; fresh seaweed was extracted 2 times in 2 h; (3) the average total content of pigments was 1.85 mg/g (calculated with dry L. japonica).
Resumo:
Mo surface species of molybdenum nitride and their changes under sulfiding conditions were investigated by XRD and XPS. Mo2N was synthesized by temperature-programmed reaction of MoO3, with NH3. The decomposition of the Mo3d spectra gave a Mo3d doubler which corresponded to Modelta+ (2 less than or equal to delta < 4), Mo4+ and Mo5+ Or Mo6+ species. The BE of the Mo species of passivated Mo2N shifted to higher energy level compared with the freshly prepared Mo2N due to the oxidation of Mo nitride during passivation. When Mo2N was contacted for 4 h with a 15% H2S-H-2 mixture at 400 degrees C, the XRD spectra did not reveal any new phase, which indicates a high stability of Mo2N against sulfidation, but XPS data showed the presence of sulfur, including S-0 and S2- species, and a decrease of the N/Mo atomic ratio revealed some changes in surface composition. More than one monolayer of Mo2N was transformed to sulfide. It is probable that the oxygen incorporated during passivation reacted with sulfur and formed a thin layer of molybdenum sulfide on the Mo2N surface. (C) 1998 Elsevier Science B.V. All rights reserved.