112 resultados para discipline-specific subgroups
Resumo:
Forty chromosome-specific paint probes of the domestic dog (Canis familiaris, 2n = 78) were used to delineate conserved segments on metaphase chromosomes of the American mink (Mustela vison, 2n = 30) by fluorescence in situ hybridisation. Half of the 38 canine autosomal probes each painted one pair of homologous segments in a diploid mink metaphase, whereas the other 19 dog probes each painted from two to five pairs of discrete segments. In total, 38 canine autosomal paints highlighted 71 pairs of conserved segments in the mink. These painting results allow us to establish a complete comparative chromosome map between the American mink and domestic dog. This map demonstrates that extensive chromosome rearrangements differentiate the karyotypes of the dog and American mink. The 38 dog autosomes could be reconstructed from the 14 autosomes of the American mink through at least 47 fissions, 25 chromosome fusions, and six inversions. Furthermore, comparison of the current dog/mink map with the published human/dog map discloses 23 cryptic intrachromosomal rearrangements in 10 regions of conserved synteny in the human and American mink genomes and thus further refined the human/mink comparative genome map. Copyright (C) 2000 S. Karger AG, Basel.
Evidence for a hominoid specific splicing form of neuropsin, a gene involved in learning and memory.
Resumo:
Neuropsin is a secreted-type serine protease involved in learning and memory. The type II splice form of neuropsin is abundantly expressed in the human brain but not in the mouse brain. We sequenced the type II-spliced region of neuropsin gene in humans and representative nonhuman primate species. Our comparative sequence analysis showed that only the hominoid species (humans and apes) have the intact open reading frame of the type II splice form, indicating that the type II neuropsin originated recently in the primate lineage about 18 MYA. Expression analysis using RT-PCR detected abundant expression of the type II form in the frontal lobe of the adult human brain, but no expression was detected in the brains of lesser apes and Old World monkeys, indicating that the type II form of neuropsin only became functional in recent time, and it might contribute to the progressive change of cognitive abilities during primate evolution.
Resumo:
The prehistoric peopling of East Asia by modern humans remains controversial with respect to early population migrations. Here, we present a systematic sampling and genetic screening of an East Asian-specific Y-chromosome haplogroup (O3-M122) in 2,332 individuals from diverse East Asian populations. Our results indicate that the O3-M122 lineage is dominant in East Asian populations, with an average frequency of 44.3%. The microsatellite data show that the O3-M122 haplotypes in southern East Asia are more diverse than those in northern East Asia, suggesting a southern origin of the O3-M122 mutation. It was estimated that the early northward migration of the O3-M122 lineages in East Asia occurred similar to 25,000-30,000 years ago, consistent with the fossil records of modern humans in East Asia.
Resumo:
MRGX2, a G-protein-coupled receptor, is specifically expressed in the sensory neurons of the human peripheral nervous system and involved in nociception. Here, we studied DNA polymorphism patterns and evolution of the MRGX2 gene in world-wide human populations and the representative nonhuman primate species. Our results demonstrated that MRGX2 had undergone adaptive changes in the path of human evolution, which were likely caused by Darwinian positive selection. The patterns of DNA sequence polymorphisms in human populations showed an excess of derived substitutions, which against the expectation of neutral evolution, implying that the adaptive evolution of MRGX2 in humans was a relatively recent event. The reconstructed secondary structure of the human MRGX2 revealed that three of the four human-specific amino acid substitutions were located in the extra-cellular domains. Such critical substitutions may alter the interactions between MRGX2 protein and its ligand, thus, potentially led to adaptive changes of the pain-perception-related nervous system during human evolution. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Comparative genetic analysis between human and chimpanzee may detect genetic divergences responsible for human-specific characteristics. Previous studies have identified a series of genes that potentially underwent Darwinian positive selection during huma
Resumo:
The TTL.6 gene is a member of the tubulin-tyrosine ligase (TTL) family involved in apoptosis and preferentially expressed in the testis. We sequenced the coding region and part of the introns of TTL.6 in world wide human populations and five representativ
Resumo:
Neuropsin (kallikrein 8, ELKS) is a secreted-type serine protease preferentially expressed in the central nervous system and involved in learning and memory. Its splicing pattern is different in human and mouse, with the longer form (type II) only express
Resumo:
Lineage-specific microRNA (miRNA) families may contribute to developmental novelties during evolution. However, little is known about the origin and evolution of new miRNA families. We report evidence of an Alu-mediated rapid expansion of miRNA genes in a
Resumo:
Kallikrein 8 (KLK8) is a serine protease functioning in the central nervous system, and essential in many aspects of neuronal activities. Sequence comparison and gene expression analysis among diverse primate species identified a human-specific splice for
Resumo:
A transmembrane protein gene, c1orf37-dup, was identified as a young gene specific to humans. It was derived from the conserved c1orf37 gene through retroposition after the divergence of human and chimpanzee. This gene has evolved rapidly driven by positi
Resumo:
Anabarilius grahami is a cyprinoid fish endemic to Fuxian Lake, Yunnan, China. In this study, a comprehensive staging series of A. grahami was produced. The embryonic development of A. grahami was divided into six main periods: zygote period, cleavage per
Resumo:
An association of the dopamine receptor D4 (DRD4) gene located on chromosome 11p15.5 and attention deficit/hyperactivity disorder (ADHD) has been demonstrated and replicated by multiple investigators. A specific allele [the 7-repeat of a 48-bp variable number of tandem repeats (VNTR) in exon 3] has been proposed as an etiological factor in attentional deficits manifested in some children diagnosed with this disorder. In the current study, we evaluated ADHD subgroups defined by the presence or absence of the 7-repeat allele of the DRD4 gene, using neuropsychological tests with reaction time measures designed to probe attentional networks with neuroanatomical foci in D4-rich brain regions. Despite the same severity of symptoms on parent and teacher ratings for the ADHD subgroups, the average reaction times of the 7-present subgroup showed normal speed and variability of response whereas the average reaction times of the 7-absent subgroup showed the expected abnormalities (slow and variable responses). This was opposite the primary prediction of the study. The 7-present subgroup seemed to be free of some of the neuropsychological abnormalities thought to characterize ADHD.