31 resultados para chlorides
Resumo:
This feature article highlights work from the authors' laboratories on the various kinds of oxide optical materials, mainly luminescence and pigment materials with different forms (powder, core-shell structures, thin film and patterning) prepared by the Pechini-type sol-gel (PSG) process. The PSG process, which uses the common metal salts (nitrates, acetates, chlorides, etc.) as precursors and citric acid (CA) as chelating ligands of metal ions and polyhydroxy alcohol (such as ethylene glycol or poly ethylene glycol) as a cross-linking agent to form a polymeric resin on molecular level, reduces segregation of particular metal ions and ensures compositional homogeneity. This process can overcome most of the difficulties and disadvantages that frequently occur in the alkoxides based sol-gel process.
Resumo:
A highly efficient Pd(OAc)(2)/guanidine aqueous system for the room temperature Suzuki cross-coupling reaction has been developed. The new water-soluble and air-stable catalyst Pd(OAc)(2)(.)(1f)(2) from Pd(OAc)(2) and 1,1,3,3-tetramethyl-2-n-butylguanidine (1f) was synthesized and characterized by X-ray crystallography. In the presence of Pd(OAc)(2)(.)(1f)(2), coupling of arylboronic acids with a wide range of aryl halides, including aryl iodides, aryl bromides, even activated aryl chlorides, was carried out smoothly in aqueous solvent to afford the cross-coupling products in good to excellent yields and high turnover numbers (TONs) (TONs up to 850 000 for the reaction of 1-iodo-4-nitrobenzene and phenylboronic acid). Furthermore, this mild protocol could tolerate a broad range of functional groups.
Resumo:
Reaction of 3-(2-pyridylmethyl)indenyl lithium (1) with LnI(2)(THF)(2) (Ln = Sm, Yb) in THF produced the divalent organolanthanides (C5H4NCH2C9H6)(2)Ln(II)(THF) (Ln = Sm (2), Yb (3)) in high yield. 1 reacts with LnCl(3) (Ln = Nd, Sm, Yb) in THF to give bis(3-(2-pyridylmethyl)indenyl) lanthanide chlorides (C5H4NCH2C9H6)(2)Ln(III)Cl (Ln = Nd (4), Sm (5)) and the unexpected divalent lanthanides 3 (Ln = Yb). Complexes 2-5 show more stable in air than the non-functionalized analogues. X-ray structural analyses of 2-4 were performed. 2 and 3 belong to the high symmetrical space group (Cmcm) with the same structures, they are THF-solvated 9-coordinate monomeric in the solid state, while 4 is an unsolvated 9-coordinate monomer with a trans arrangement of both the side-arms and indenyl rings in the solid state. Additionally, 2 and 3 show moderate polymerization activities for F-caprolactone (CL).
Resumo:
Hexaalkylguanidinium halides exhibit an efficient catalytic activity in the synthesis of cyclic carbonates from, epoxides and carbon dioxide. By this method cyclic carbonates can be obtained in a high yield and a high selectivity at a low temperature and atmospheric pressure. This procedure is easy for the product isolation and recycling of the catalyst.
Resumo:
Bronsted acid-base ionic liquids (GILs) based on guanidine and acetic acid are efficient reaction media for palladium-catalyzed Heck reactions. They offer the advantages of high activity and reusability. GIL2 plays multiple roles in the reaction: it could act as solvent, as a strong base to facilitate beta-hydride elimination, and as a ligand to stabilize activated Pd species.
Resumo:
An air- and water-stable PEG-supported bidentate nitrogen ligand is prepared and its applications in the palladium-catalyzed Suzuki reaction of aryl halides with arylboronic acids in PEG and Suzuki-type reaction of aryl halides with sodium tetraphenylborate in aqueous media are reported. The homogeneous catalyst system is environmentally friendly and offers the advantages of high activity, reusability and easy separation.
Resumo:
A facile molten salt synthesis route was developed to prepare ZnTiO3 ceramic powders with simple oxides ZnO and TiO2 using sodium and potassium chloride eutectic salts as flux. The role of calcination temperature and time and the amount of salt addition to ZnTiO3 formation was investigated by thermogravimetry-differential thermal analysis, X-ray diffraction and Fourier transformation-infrared spectroscopy measurements. Pure hexagonal phase of ZnTiO3 could be obtained from the mixture of the simple oxides and the chlorides (50 mol% KCl, 20 times to oxides in molar ratio) heating at 800 degrees C for 6 h. The scanning electron microscopy images revealed the products were hexagonal sheets of about 1-3 mu m size. Increasing the amount of salt aids in reducing the crystal sizes of final ceramic powders because of diluting the solution.
Resumo:
A new initiator for atom transfer radical polymerization (ATRP), (Cl2HCCOOCH2)(4)C(TDCAP) was designed and successfully synthesized. The initiator was,used to initiate,the polymerization of styrene via ATRP to method yield an eight-arm polystyrene with functional end-group chlorides. The different polymers could be prepared via ATRP of different monomers at 130 degrees C using TDCAP/CuCl/bPy as the initiating system. The initiator and eight-armed polymer were characterized by means of H-1 NMR, FTIR and GPC.
Resumo:
Thirty - two title complexes (ROCOCHRCH2SnCl3)-C-1 . (2 - HOC6H4CH = NC6H4 - X) (R = Me, Et, n - Bu; R-1 = H, Me; X = H,4' - Cl, 3' - Pr, 3' - OH, 3', 4' - Cl-2, 4' - OMe) were synthesized and characterized by elemental analysis,UV - vis, IR, H-1 NMR. The crystal structure of n - BuOCOCH2CH2SnCl3 . (2 - HOC6H4CH - NC6H4OMe - 4') were determined by the X - ray diffraction analysis, The crystal belongs to monoclinic system, with a = 1.4661 (3)nm, b = 0.9307 (2)nm, c = 1.7888 (4)nm, beta = 94.04 (3)degrees, V = 2.4348nm(3), D-c = 1.581mg/m(3), Z = 4, F(000) = 1160, mu = 1.405mm(-1), R = 0.0354, R-w = 0,0486, space group: P2(1)/c. The complexes exist as a discrete monomer. The tin atom has a distorted octahedral geometry due to intramolecular coordination of the carbonyl oxygen and the phenolic oxygen of the Schiff base ligands, The coordination number of tin atom is 6.
Resumo:
The synthesis and characterization of a series of poly(amic methyl ester)s from five aromatic dianhydrides and a diamine, 4,4'-oxydianiline (ODA), are described. These poly(amic ester)s are obtained by the low-temperature polycondensation from dianhydrides derived diester-diacyl chlorides and ODA in DMAc solution with the inherent viscosities in the 0.5-0.9 dL/g range. These precursors are readily soluble in aprotic solvents. A detailed thermal study of the imidization process is presented, based on dynamic and isothermal TGA measurements, FTIR spectroscopy, and dynamic mechanical analysis. (C) 1997 John Wiley & Sons, Inc.
Resumo:
The cleavage of 3',5'-cAMP, 3',5'-cGMP and 3',5'-dcAMP by lanthanides has been investigated by HPLC and H-1 NMR. Rapid cleavage of cAMP, cGMP and dcAMP by Ce(III) under air at pH 8 and 37 degrees C has been observed. Regioselective cleavage of P-O(5') bond in cAMP, cGMP and dc;aMP tu give the corresponding 3'-AMP, 3'-GMP and 3'-dAMP by lanthanide chlorides has been achieved, and 3'-AMP and 3'-GMP are cleaved to adenosine(A) and guanosine(CT) more slowly, respectively, The notable difference in reactivity between Ce(III) and the other lanthanide ions under air has also been studied. The cleavage is enhanced with the increase in the molar fraction of Ce(IV). The fast cleavage of cAMP by Ce(III) under air at pH 8 is ascribed to the resultant Ce(IV) in the reaction mixture.
Resumo:
Sixteen novel beta-alkoxycarbonylethyltin trichlorides and the corresponding N-aryl-2-hydroxyacetophenylideneimines complexes have been synthesized and characterized. An X-ray crystal structure analysis of the complex of beta-methyloxycarbonylethyltin trichloride and N-4-methylphenyl-2-hydroxyacetophenylideneimine has been performed, The crystal belongs to space group
, The cell parameters are: a = 1.0201(6) nm, b = 1.082 2(4) nm, c = 1.394 9(6) nm, alpha = 99.88(3)degrees, beta = 98.63(4)degrees, gamma = 97.86(4)degrees, Z = 2, The ligands coordinate to tin atom via phenolic oxygen atom. Coordination of carbonyl oxygen atom to tin atom still exists in the complexes, The coordination number of tin atom is 6.
Resumo:
In the presence of 1,10-phenanthroline (phen), lanthanide chlorides LnCl3 reacted with cyclopentadienylsodium to give the novel complexes [Na.3phen]+[Ln(C5H5)3Cl]-.phen (Ln = La, Pr or Nd). In the praseodymium case, crystal structure analysis showed that
Resumo:
[(Me4C2Cp2SmCl.MgCl2.3THF)THF]2 was prepared by the reaction of Me4C2Cp2MgCl2.4THF (Cp=C5H4, THF = tetrahydrofuran) with SmCl3 in THF. The crystals belong to triclinic space group P-1 with a 12.149(3), b 13.187(4), c 13.810(5) angstrom, alpha 117.23(2), beta 94.07(2), gamma 62.86(2)-degrees, V = 1723.9(1.0) angstrom3. In the molecular structure of the title compound there is a symmetrical centre and a quadrilateral formed by SM, Mg, Cl1, Cl2 atoms. Two centroids of the cyclopentadienyls, bridged by a tetramethylethano group form with three bridging chlorine atoms (Cl1, Cl2, Cl1a) a pseudo-trigonal bipyramid around Sm. Three oxygen atoms of THF and three chlorine atoMS (Cl1, Cl2, Cl3) constitute a distorted octahedron around Mg.
Resumo:
New bis (2-methoxyethylcyclopentadienyl) yttrium and ytterbium tetrahydroborates (Ln = Y, 1; Yb, 2) have been synthesized in good yield by the reaction of bis (2-methoxyethylcyclopentadienyl) lanthanide chlorides (Ln = Y, Yb) with sodium borohydride in THF at room temperature. The title complexes were characterized by elemental analyses, MS, H-1 NMR and IR spectra. The crystal structures of 1 and 2 have been determined by X-ray diffraction. 1 crystallizes from THF-n-Hexane in space group Pna2(1) with unit cell parametert: a = 1.2390(3), b = 1.1339(2), c = 1.1919 (2) nm and V = 1.6745(6) nm3 with z = 4 for D(c) = 1.39 g.cm-3.The structure was solved by direct method and refined to final R = 0.061 (for 1730 observed reflections). The Space group of 2 is Pna2(1) with unit cell parameters: a = 1.2399(6), b = 1.1371(5), c = 1.1897(2) nm and V = 1.6773(1) nm3 with z = 4 for D(c) = 1.72 g.cm-3, R = 0.038 (for 2157 observed reflections). The X ray structures and IR reveal the bidentate yttrium and ytterbium tetrahydroborate complexes with the intramolecular coordination bonds between lanthanide metal and ligand oxygen atoms.