29 resultados para Yale Center for British Art
Resumo:
Goal, Scope and Background. In some cases, soil, water and food are heavily polluted by heavy metals in China. To use plants to remediate heavy metal pollution would be an effective technique in pollution control. The accumulation of heavy metals in plants and the role of plants in removing pollutants should be understood in order to implement phytoremediation, which makes use of plants to extract, transfer and stabilize heavy metals from soil and water. Methods. The information has been compiled from Chinese publications stemming mostly from the last decade, to show the research results on heavy metals in plants and the role of plants in controlling heavy metal pollution, and to provide a general outlook of phytoremediation in China. Related references from scientific journals and university journals are searched and summarized in sections concerning the accumulation of heavy metals in plants, plants for heavy metal purification and phytoremediation techniques. Results and Discussion. Plants can take up heavy metals by their roots, or even via their stems and leaves, and accumulate them in their organs. Plants take up elements selectively. Accumulation and distribution of heavy metals in the plant depends on the plant species, element species, chemical and bioavailiability, redox, pH, cation exchange capacity, dissolved oxygen, temperature and secretion of roots. Plants are employed in the decontamination of heavy metals from polluted water and have demonstrated high performances in treating mineral tailing water and industrial effluents. The purification capacity of heavy metals by plants are affected by several factors, such as the concentration of the heavy metals, species of elements, plant species, exposure duration, temperature and pH. Conclusions. Phytoremediation, which makes use of vegetation to remove, detoxify, or stabilize persistent pollutants, is a green and environmentally-friendly tool for cleaning polluted soil and water. The advantage of high biomass productive and easy disposal makes plants most useful to remediate heavy metals on site. Recommendations and Outlook. Based on knowledge of the heavy metal accumulation in plants, it is possible to select those species of crops and pasturage herbs, which accumulate fewer heavy metals, for food cultivation and fodder for animals; and to select those hyperaccumulation species for extracting heavy metals from soil and water. Studies on the mechanisms and application of hyperaccumulation are necessary in China for developing phytoremediation.
Resumo:
Using spatially resolved cathodoluminescence spectroscopy, we investigate the spatial luminescence distribution in a fully strained (In,Ga)N layer, in particular, its correlation with the distribution of threading dislocations (TDs). Regarding the impact of TDs on the luminescence properties, we can clearly distinguish between pure edge-type TDs and TDs with screw component. At the positions of both types of TDs, we establish nonradiative recombination sinks. The radius for carrier capture is at least four times larger for TDs with screw component as for pure edge-type TDs. The large capture radius of the former is due to a spiral-like growth mode resulting in an increase in the In content in the center of the spiral domains in comparison to their periphery.
Resumo:
We study quantum oscillations of the magnetization in Bi2Se3 (111) surface system in the presence of a perpendicular magnetic field. The combined spin-chiral Dirac cone and Landau quantization produce profound effects on the magnetization properties that are fundamentally different from those in the conventional semiconductor two-dimensional electron gas. In particular, we show that the oscillating center in the magnetization chooses to pick up positive or negative values depending on whether the zero-mode Landau level is occupied or empty. An intuitive analysis of these features is given and the subsequent effects on the magnetic susceptibility and Hall conductance are also discussed.
Resumo:
This paper presents a study of the transformation of high-temperature AlN (HT-AlN) interlayer (IL) and its effect on the strain relaxation of Al0.25Ga0.75N/HT-AlN/GaN. The HT-AlN IL capped with Al0.25Ga0.75N transforms into AlGaN IL in which the Al composition increases with the HT-AlN IL thickness while the total Ga content keeps nearly constant. During the HT-AlN IL growth on GaN, the tensile stress is relieved through the formation of V trenches. The filling up of the V trenches by the subsequent Al0.25Ga0.75N growth is identified as the Ga source for the IL transformation, whose effect is very different from a direct growth of HT-AlGaN IL. The a-type dislocations generated during the advancement of V trenches and their filling up propagate into the Al0.25Ga0.75N overlayer. The a-type dislocation density increases dramatically with the IL thickness, which greatly enhances the strain relaxation of Al0.25Ga0.75N. (c) 2008 American Institute of Physics.
Resumo:
The Rashba spin splitting of the minibands of coupled InAs/GaAs pyramid quantum dots is investigated using the k center dot p method and valence force field model. The Rashba splitting of the two dimensional miniband in the lateral directions is found due to the structure inversion asymmetry in the vertical direction while the miniband in the vertical direction has no Rashba spin splitting. As the space between dots increases, the Rashba coefficients decrease and the conduction-band effective mass increases. This Rashba spin splitting of the minibands will significantly affect the spin transport properties between quantum dots. (C) 2008 American Institute of Physics.
Resumo:
Considering tensile-strained p-type Si/Si1-yGey quantum wells grown on a relaxed Si1-xGex ( 0 0 1) virtual substrate ( y < x), the hole subband structure and the effective masses of the first bound hole state in the quantum wells are calculated by using the 6 x 6 k center dot p method. Designs for tensile-strained p-type quantum well infrared photodetectors ( QWIPs) based on the bound-to-quasi-bound transitions are discussed, which are expected to retain the ability of coupling normally incident infrared radiation without any grating couplers, have lower dark current than n-type QWIPs and also have a larger absorption coefficient and better transport characteristics than normal unstrained or compressive-strained p-type QWIPs.
Resumo:
Ordered arrays of FePt nanoparticles were prepared using a diblock polymer micellar method combined with plasma treatment. Rutherford backscattering spectroscopy analyses reveal that the molar ratios of Fe to Pt in metal-salt-loaded micelles deviate from those when metal precursors are added, and that the plasma treatment processes have little influence upon the compositions of the resulting FePt nanoparticles. The results from Fourier transform infrared spectroscopy show that the maximum loadings of FeCl3 and H2PtCl6 inside poly( styrene)-poly(4-vinylpyridine) micelles are different. The composition deviation of FePt nanoparticles is attributed to the fact that one FeCl3 molecule coordinates with a single 4-vinylpyridine (4VP) unit, while two neighboring and uncomplexed 4VP units are required for one H2PtCl6 molecule. Additionally, we demonstrate that the center-to-center distances of the neighboring FePt nanoparticles can also be tuned by varying the drawing velocity.
Resumo:
We investigate the lifetime distribution functions of spontaneous emission from line antennas embedded in finite-size two-dimensional 12-fold quasi-periodic photonic crystals. Our calculations indicate that two-dimensional quasi-periodic crystals lead to the coexistence of both accelerated and inhibited decay processes. The decay behaviors of line antennas are drastically changed as the locations of the antennas are varied from the center to the edge in quasi-periodic photonic crystals and the location of transition frequency is varied.
Resumo:
The electronic structure, Zeeman splitting, and g factor of Mn-doped CdS nanowires are studied using the k center dot p method and the mean field model. It is found that the Zeeman splittings of the hole ground states can be highly anisotropic, and so can their g factors. The hole ground states vary a lot with the radius. For thin wire, g(z) (g factor when B is along the z direction or the wire direction) is a little smaller than g(x). For thick wire, g(z) is mcuh larger than g(x) at small magnetic field, and the anisotropic factor g(z)/g(x) decreases as B increases. A small transverse electric field can change the Zeeman splitting dramatically, so tune the g(x) from nearly 0 to 70, in thick wire. The anisotropic factor decreases rapidly as the electric field increases. On the other hand, the Zeeman splittings of the electron ground states are always isotropic.