24 resultados para WASTE WATER


Relevância:

60.00% 60.00%

Publicador:

Resumo:

N-Methylimidazolium functionalized strongly basic anion exchange resins in the Cl- form (RCI) and SO46- form (R2SO4) were synthesized and employed for adsorption of Cr(VI) from aqueous solution. FT-IR and elementary analysis proved the structures of anion exchange resins and the content of functional groups. The gel-type strongly basic anion exchange resins had high thermal stability according to TGA and good chemical stability under the experimental conditions. The adsorption behaviors of Cr(VI) on RCI and R2SO4 were studied using the batch technique. It was shown that adsorption equilibrium was reached rapidly within 60 min. The adsorption data for RCI and R2SO4 were consistent with the Langmuir isotherm equation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel type of biochemical oxygen demand (BOD) biosensor was developed for water monitor, based on co-immobilizing of Trichosporon cutaneum and Bacillus subtilis in the sol-gel derived composite material which is composed of silica and the grafting copolymer of poly (vinyl alcohol) and 4-vinylpyridine (PVA-g-P(4-VP)). Factors that influence the performance of the resulting biosensor were examined. The biodegradable substrate spectrum could be expanded by the co-immobilized microorganisms. The biosensor prepared also exhibited good reproducibility and long-term stability. Good agreement was obtained between the results of the sensor BOD measurement and those obtained from conventional BOD5 method for water samples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Capillary electrophoresis with amperometric detection is evaluated for the simultaneous determination of 2-aminothiazole (A), 2-amino-benzothiazole (AB), 2-mercaptobenzothiazole (AM). The cyclic voltammogram, hydrodynamic voltammogram, effect of pH, concentration of buffer and separation voltage on the separation and the detection were studied. The conditions were optimized as follows: 50 mM phosphate buffet; pH 6.0, 2s at 17.5 kV sample injection, separation at 17.5 kV, 1.2 V as detection potential. The method provided low detection limit as 0.5 mu M, 0.05 mu M and 0.01 mu M, wide linear range 2-200 mu M, 10-200 mu M and 0.025-100 mu M for A, AB, and AM, respectively. The variations in peak current and migration time for 15 consecutive injections of a standard containing 5 mu M each compound were 3.7, 2.1, and 3.9%, and 1.2, 0.8, and 1.2%, for A, AB and AM, respectively. This method was employed to analyze river water.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The p-toluene sulfonic acid (MA) in phenol matrix was separated and determined by capillary electrophoresis with ultraviolet detector. the effect of the concentration and pH of the buffer on separation was investigated. Cinnamic acid has been chosen as the internal standard from four compounds, the calibration curves of PTSA in 50 mg/L phenol matrix were obtained with and without the internal standard. The linear range was from 1.25 to 12.5 mg/L and the correlation coefficient was 0.9999 for both curves. The limit of detection of PISA was 0.75 mg/L at 3 times of SIN. Finally, the concentration of PTSA in four synthesized samples was determined with method of standard additions, and the effect of matrix was discussed. The values of MA in these samples were 1.01, 0.94, 1.56 and 0.00 mg/L respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A highly dispersed ultramicro palladium-particle modified carbon fiber microdisk array electrode (Pd-CFE) was employed for capillary electrophoresis-electrochemical (CEEC) detection of hydroxylamine (HA). The Pd particles obtained were in the nanometer scale, had a high electrocatalytic activity towards HA and exhibited good reproducibility and stability. A linear relationship between the current and the analyte concentration was found between 5 x 10(-6) and 1 x 10(-3) mol/l of HA with a correlation coefficient of 0.9992. The detection limit was 5 x 10(-8) mol/l. The applicability of the method for the determination of HA in river water and waste water was investigated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An assessment of metal contamination in surface sediments of the Jiaozhou Bay, Qingdao, one of the rapidly developing coastal economic zones in China, is provided. Sediments were collected from 10 stations and a total of 15 heavy metals were analyzed. Concentrations of metals show significant variability and range from 210 to 620 ppm for Ti, 2.7 to 23 ppm for Ni, 4.2 to 28 ppm for Cu, 5.2 to 18 ppm for Pb, 12 to 58 ppm for Zn, 0.03 to 0.11 ppm for Cd, 5 to 51 ppm for Cr, 1.5 to 9.9 ppm for Co, 5.3 to 19 ppm for As, 12 to 32 ppm for Se, and 19 to 97 ppm for Sr. Based on concentration relationships and enrichment factor (EF) analyses, the results indicate that sediment grain size and organic matter played important roles in controlling the distribution of the heavy metals in surface sediments of the Jiaozhou Bay. The study shows that the sediment of the Jiaozhou Bay has been contaminated by heavy metals to various degrees, with prominent arsenic contributing the most to the contamination. The analysis suggests that the major sources of metal contamination in the Jiaozhou Bay are land-based anthropogenic ones, such as discharge of industrial waste water and municipal sewage and run-off. Notably, the elevated heavy metal concentrations of the Jiaozhou Bay sediments could have a significant impact on the bay's ecosystem. With the rapid economic development and urbanization around the Jiaozhou Bay, coastal management and pollution control should focus on these contaminant sources, as well as provide ongoing monitoring studies of heavy metal contamination within the bay.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Samples of groundwater, river water, river sediment, paddy soil, rice seeds, hen eggs, fish, umbilical cord blood, and newborn meconium were collected from October 2002 to October 2003 near a large site in China used for the disassembly of obsolete transformers and other electronic or electrical waste. Six indicator PCB congeners, three non-ortho dioxin-like PCB congeners, and six organochlorine pesticides were determined in the samples by GC with electron capture detector. The results demonstrated that the local environment and edible foods had been seriously polluted by toxic PCBs and organochlorine pesticides. The actual daily intakes (ADIs) of these pollutants were estimated for local residents living in the area. The intake data showed that the contents of PCBs in these local residents were substantial, as the ADI estimates greatly exceed the reference doses set by the World Health Organization and the United States Agency for Toxic Substances and Disease Registry. The presence of the indicator PCB congeners in the cord blood and the meconium samples, as well as significant correlations (r(2) > 0.80, p < 0.05) between these levels, suggests a potential biotransfer of these indicators from mothers to their newborns. This preliminary study showed that obsolete transformers and other electronic or electrical waste can be an important source for the emission of persistent organic pollutants into the local environment, such as through leakage, evaporation, runoff, and leaching. Contamination from this source appears to have reached the level considered to be a serious threat to environmental and human health around the disassembly site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Waste cooking oil (WCO) is the residue from the kitchen, restaurants, food factories and even human and animal waste which not only harm people's health but also causes environmental pollution. The production of biodiesel from waste cooking oil to partially substitute petroleum diesel is one of the measures for solving the twin problems of environment pollution and energy shortage. In this project, synthesis of biodiesel was catalyzed by immobilized Candida lipase in a three-step fixed bed reactor. The reaction solution was a mixture of WCO, water, methanol and solvent (hexane). The main product was biodiesel consisted of fatty acid methyl ester (FAME), of which methyl oleate was the main component. Effects of lipase, solvent, water, and temperature and flow of the reaction mixture on the synthesis of biodiesel were analyzed. The results indicate that a 91.08% of FAME can be achieved in the end product under optimal conditions. Most of the chemical and physical characters of the biodiesel were superior to the standards for 0(#)diesel (GB/T 19147) and biodiesel (DIN V51606 and ASTM D-6751).