18 resultados para Vickers


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel hard material of (W0.5Al0.5)C-0.5 has been successfully sintered under high-pressure (4.5 GPa). The influence of sintering time and temperature on the microstructure, Vickers microhardness and density of the as-prepared specimens are well described. Interestingly, sintering temperature has an amazing influence on the hardness, density and microstructure of the specimen while the sintering time does not. It is found that the most suitable sintering condition from our work is 1600 degrees C and 10 min under pressure of 4.5 GPa. The hardness and relative density of the as-prepared sample can reach 2340 kg mm(-2) and 98.62%, respectively. The cell parameters of the sintered specimen is found to be little smaller than that of the powder, which we propose is related to the high pressure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A bulk Ti45Zr35Ni17Cu3 alloy, which consisted of the icosahedral quasicrystalline phase, was prepared by mechanical alloying(MA) and subsequent pulse discharge sintering. Ti45Zr35Ni17Cu3 amorphous powders (with particle size < 50 mu m) were obtained after mechanical alloying for more than 150 h from the mixture of the elemental powder. The transformation temperature range from amorphous phase to the quasicrystalline phase was from 400 K to 900 K. The mechanical properties of the bulk quasicrystalline alloy have been examined at room temperature. The Vickers hardness and compressive fracture strength were 620 +/- 40 and 1030 +/- 60 MPa, respectively. The bulk quasicrystalline alloy exhibited the elastic deformation by the compressive test. The fracture mode was brittle cleavage fracture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(W0.5Al0.5)C-0.5 substoichiometric compound is synthesized by a combination of mechanical milling and high-pressure reactive sintering. X-ray diffraction is used to monitor the phase changes and crystallization of (W0.5Al0.5) C-0.5 during the whole reaction process. As a result, (W0.5Al0.5) C-0.5 is identified as the hexagonal WC-type belonging to the P-6m2 space group (No. 187), and the lattice parameters of (W0.5Al0.5)C-0.5 are calculated to be a = 2.907 (1) angstrom, c = 2.838 (1) angstrom, which are very similar to those of WC even if there are approximately 50 pct carbon vacancies in the cell of (W0.5Al0.5)C-0.5 as compared with WC. The substoichiometric (W0.5Al0.5)C-0.5 compound has a Vickers microhardness of 2385 +/- 70 kg mm(-2), which is as high as that of WC, while its density is far lower than that of WC.