21 resultados para Trenching machinery


Relevância:

10.00% 10.00%

Publicador:

Resumo:

讨论了锻压机工作时偏心载荷对机架下横梁和立柱应力变化的影响程度,验证了下横梁的断裂原因;详细地讨论了导套筒对立柱作用反力的影响,指出了传统液压机设计方法中假设条件的不足,为该类机械的结构设计和改进提出了新的见解。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

在高温、多粉尘、多有害气体的危险环境中,工业机械手的应用就尤为显得重要,我们设计的液压组合式机械手特点是巧妙地使油缸远离手爪,以防油液受热使油的黏度下降。能在振动、油污等条件下稳定和可靠的工作,在锻造水压机生产流水线中,代替人手来搬运,装卸和操作,不但减轻了工人的劳动强度还大大的提高了劳动生产率。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The two major issues in mining industry are work safety and protection of ground environment when carrying on underground mining activities. Cut-and-fill mining method is increasingly applied in China owing to its advantages of controlling ground pressure and protecting the ground environment effectively. However, some cut-and-fill mines such as Jinchuan nickel mine which has big ore body, broken rock mass and high geostress have unique characteristics on the law of ground pressure and rock mass movement that distinguish from other mining methods. There are still many problems unknown and it is necessary for the further analysis. In this dissertation, vast field survey, geology trenching and relative data analysis are carried out. The distribution of ground fissures and the correlation of the fissures with the location of underground ore body is presented. Using of monitoring data by three-dimension fissure meter and GPS in Jinchuan Deposit Ⅱ, the rule of the surface deformation and the reason of ground fissures generation are analyzed. It is shown that the stress redistribution in surrounding rocks resulting from mining, the existence of the void space underground and the influence of on-going mining activities are three main reasons for the occurrence of ground fissures. Based on actual section planes of No.1 ore body, a large-scale 3D model is established. By this model, the complete process of excavation and filling is simulated and the law of rock mass movement and stability caused by Cut-and-fill Mining is studied. According to simulation results, it is concluded that the deformation of ground surface is still going on developing; the region of subsidence on the ground surface is similar with a circle; the area on the hanging wall side is larger than one on the lower wall side; the contour plots show the centre of subsidence lay on the hanging wall side and the position is near the ore body boundary of 1150m and 1250m where ore body is the thickest. Along strike-line of Jinchuan Deposit Ⅱ, the deformation at the middle of filling body is larger than that in the two sides. Because of the irregular ore body, stress concentrates at the boundary of ore body. With the process of excavation and filling, the high stress release and the stress focus disappear on the hanging wall side. The cut-and-fill mechanism is studied based on monitoring data and numerical simulation. The functions of filling body are discussed. In this dissertation, it is concluded that the stress of filling body is just 2MPa, but the stress of surrounding rock mass is 20MPa. We study the surface movement influenced by the elastic modulus of backfill. The minimal value of the elastic modulus of backfill which can guarantee the safety production of cut-and-fill mine is obtained. Finally, based on the real survey results of the horizontal ore layer and numerical simulation, it is indicated that the horizontal ore layer has destroyed. Key words: cut-and-filling mining, 3D numerical simulation, field monitoring, rock mass movement, cut-and-filling mechanism, the elastic modulus of backfill, the horizontal ore layer

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The exploration in recent years shows that the Yanchang Formation in the southwest of Ordos Basin is of great resource potential and good exploration and exploitation prospect. In the thesis ,sedimentary source analysis,sedimentary system,sedimentary microfacies,sandstones distribution and reservoir characteristic are studied and favorable oil area are forecasted in Chang6-Chang8 of Yanchang formation in HuanXian region, by mainly study on the data of field section observation ,core observation, well logging explaination and routine microscope slice identification,scanning Electron Microscope and reservoir analysis of lithology and physical property , Under the guidance of such advanced theories and methods as sedimentology,reservoir sedimentology,lithological oil pool and so on. The stratum of Chang6-Chang8 of Yanchang formation could be divided into pieces of member following the principles that firstly contrasting the big segments, then contrasting the small segments, being controlled by cycle and consulting the thickness etc.And the characteristic of stratum are detailed discussed , respectively. Based on the source direction of the central basin, heavy and light minerals are used to analyse source direction of Chang6 and Chang8 member, in HuanXian area. Research result shows that the source of Chang6 and Chang8 member is mixed provenance,including west-south,west and east-north. By the study of rock types、 sedimentary conformation、lithology and electromotive curve combination and palaeo-biology,lake、delta and braided delta mianly developed in study area are recognized, Subaqueous distributary channels in delta front and in braided delta front, and sand body in deep-lake turbidite, are the main reservoir.forthermore,the characteristic of depositional system and sandy body in space are discussed. Applied with routine microscope slice identification, Scanning Electron Microscope, reservoir lithology and physical property analysis and other analytic machinery, Feldspar-lithic fine-sandstone and feldspar fine-sandstone are mainly sandstone of Y Chang6-Chang8 in Huanxian area, small pore and tiny pore are the main pore types, tiny throat type and micro-fine throat type are widely developed , secondary dissolution porosity, intercrystal porosity, tiny pore and micro-crack are main pore types.Intergranular porosity and dissolution porosity secondary is the main pore secondary. The dominant diagenesis types in the area are compaction, cementation, replacement and dissolution. Chlorite films cementation facies, carbonate cementation facies ,mud cementation compaction facie, compaction 、pressure solution facies are the main diagenetic facies,in which Chlorite films cementation facies is the best diagenetic facies in study area. Reservoir influence factor analysis ,rock types are the main factor forming this low-pore and low-permeability of Chang6-Chang8 member in study area,and relatively higher permeability area are cortrolled by sedimentary facies distribution, diagenesis improved reservoir physical property. According to the distributing of sedimentary micro-facies and sandy body , and the test oil, favorable region in Chang6-Chang8 are forecasted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract: Hejiaji area lies on eastern part of Shanbei Slope in Ordos Basin and the primary oil-bearing bed is Chang 4+5 and Chang 6 of Yanchang Formation. It is indicated that the sedimentary facies and reservoir characteristics restricted the hydrocarbon accumulation regularity by the geological information. Therefore, Applied with outcrop observation,core description, geophysical logging interpretation, thin section determination, Scanning Electron Microscope, reservoir lithology and physical property analysis and other analytic machinery, the sedimentary facies ,micro-characteristic and master control factors on hydrocarbon reservoir of Yanchang Formation in Hejiaji area are studied deeply by means of sedimentology,reservoir geology and petroleum geology and provide a reliably reference for later prospect . Delta facies are identified in Hejiaji area and of which distributary channels in delta plain microfacies controlled the distribution of sand bodies and accumulation of oil and gas.The distribution of sand bodies distributed from northeast to southwest are dominated by sedimentary facies . It was shown that the sandstones are medium to granule arkose,which the mud matrix is r and including,calcite,the content of matrix is lower and that mostly are cements which are mainly quartz and feldspar overgrowths and chlorite films, in the second place are hydromica and ferrocalcite. All the sandstones have entered a period of late diagenetic stage in which the dominant diagenesis types in the area are compaction, cementation and dissolution. Remnant intergranular porosity and feldspar dissolved pore are main pore types which are megalospore and medium pore. Medium-fine throat, fine throat and micro-fine throat are the mainly throat type. Pore texture can be classified as megalospore and fine throat type, medium-pore and micro-fine throat type mainly, and they are main accumulate interspace in research region. The reservoir of Yanchang Formation in Hejiaji area is low- pore and low- permeability in the mass which have strong heterogeneity in bed, interbedded and plane. Studying the parameter of pore and permeability comprehensively and consulting prevenient study results of evaluation of reservoir, the reservoir is classifiedⅡ,Ⅲ and Ⅳ three types in which the Ⅱand Ⅲ can be divided into Ⅱa and Ⅱb, Ⅲa and Ⅲb respectively. Ⅱb and Ⅲa are the main reservoir type in Hejiaji area which are about 72.73%and 80%percent of whole reservoir and effective reservoir respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Superfine mineral materials are mainly resulted from the pulverization of natural mineral resources, and are a type of new materials that can replace traditional materials and enjoy the most extensive application and the highest degree of consumption in the present day market. As a result, superfine mineral materials have a very broad and promising prospect in terms of market potential. Superfine pulverization technology is the only way for the in-depth processing of most of the traditional materials, and is also one of the major means for which mineral materials can realize their application. China is rich in natural resources such as heavy calcite, kaolin, wollastonite, etc., which enjoy a very wide market of application in paper making, rubber, plastics, painting, coating, medicine, environment-friendly recycle paper and fine chemical industries, for example. However, because the processing of these resources is generally at the low level, economic benefit and scale for the processing of these resources have not been realized to their full potential even up to now. Big difference in product indices and superfine processing equipment and technologies between China and advanced western countries still exists. Based on resource assessment and market potential analysis, an in-depth study was carried out in this paper about the superfine pulverization technology and superfine pulverized mineral materials from the point of mineralogical features, determination of processing technologies, analytical methods and applications, by utilizing a variety of modern analytical methods in mineralogy, superfine pulverization technology, macromolecular chemistry, material science and physical chemistry together with computer technology and so on. The focus was placed on the innovative study about the in-depth processing technology and the processing apparatus for kaolin and heavy calcite as well as the application of superfine products. The main contents and the major achievements of this study are listed as follows: 1. Superfine pulverization processing of mineral materials shall be integrated with the study of their crystal structures and chemical composition. And special attention shall be put on the post-processing technologies, rather than on the indices for particle size, of these materials, based on their fields of application. Both technical feasibility and economic feasibility shall be taken into account for the study about superfine pulverization technologies, since these two kinds of feasibilities serve as the premise for the industrialized application of superfine pulverized mineral materials. Based on this principle, preposed chemical treatment method, technology of synchronized superfine pulverization and gradation, processing technology and apparatus of integrated modification and depolymerization were utilized in this study, and narrow distribution in terms of particle size, good dispersibility, good application effects, low consumption as well as high effectiveness of superfine products were achieved in this study. Heavy calcite and kaolin are two kinds of superfine mineral materials that enjoy the highest consumption in the industry. Heavy calcite is mainly applied in paper making, coating and plastics industries, the hard kaolin in northern China is mainly used in macromolecular materials and chemical industries, while the soft kaolin in southern China is mainly used for paper making. On the other hand, superfine pulverized heavy calcite and kaolin can both be used as the functional additives to cement, a kind of material that enjoys the biggest consumption in the world. A variety of analytical methods and instruments such as transmission and scanning electron microscopy, X-ray diffraction analysis, infrared analysis, laser particle size analysis and so on were applied for the elucidation of the properties and the mechanisms for the functions of superfine mineral materials as used in plastics and high-performance cement. Detection of superfine mineral materials is closely related to the post-processing and application of these materials. Traditional detection and analytical methods for superfine mineral materials include optical microscopy, infrared spectral analysis and a series of microbeam techniques such as transmission and scanning electron microscopy, X-ray diffraction analysis, and so on. In addition to these traditional methods, super-weak luminescent photon detection technology of high precision, high sensitivity and high signal to noise ratio was also utilized by the author for the first time in the study of superfine mineral materials, in an attempt to explore a completely new method and means for the study of the characterization of superfine materials. The experimental results are really exciting! The innovation of this study is represented in the following aspects: 1. In this study, preposed chemical treatment method, technology of synchronized superfine pulverization and gradation, processing technology and apparatus of integrated modification and depolymerization were utilized in an innovative way, and narrow distribution in terms of particle size, good dispersibility, good application effects, low consumption as well as high effectiveness of superfine products were achieved in the industrialized production process*. Moreover, a new modification technology and related directions for producing the chemicals were invented, and the modification technology was even awarded a patent. 2. The detection technology of super-weak luminescent photon of high precision, high sensitivity and high signal to noise ratio was utilized for the first time in this study to explore the superfine mineral materials, and the experimental results can be compared with those acquired with scanning electron microscopy and has demonstrated its unique advantages. It can be expected that further study may possibly help to result in a completely new method and means for the characterization of superfine materials. 3. During the heating of kaolinite and its decomposition into pianlinite, the diffraction peaks disappear gradually. First comes the disappearance of the reflection of the basal plane (001), and then comes the slow disappearance of the (hkl) diffraction peaks. And this was first discovered during the experiments by the author, and it has never before reported by other scholars. 4. The first discovery of the functions that superfine mineral materials can be used as dispersants in plastics, and the first discovery of the comprehensive functions that superfine mineral materials can also be used as activators, water-reducing agents and aggregates in high-performance cement were made in this study, together with a detailed discussion. This study was jointly supported by two key grants from Guangdong Province for Scientific and Technological Research in the 10th Five-year Plan Period (1,200,000 yuan for Preparation technology, apparatus and post-processing research by using sub-micron superfine pulverization machinery method, and 300,000 yuan for Method and instruments for biological photon technology in the characterization of nanometer materials), and two grants from Guangdong Province for 100 projects for scientific and technological innovation (700,000 yuan for Pilot experimentation of superfine and modified heavy calcite used in paper-making, rubber and plastics industry, and 400,000 yuan for Study of superfine, modified wollastonite of large length-to-diameter ratio).