154 resultados para Tolerance Threshold
Resumo:
Yb:Gd2SiO5 (Yb:GSO) exhibits a large fundamental manifold splitting. Its long-wavelength emission band around 1088 nm, which has the largest emission cross section, encounters the lowest reabsorption losses caused by thermal population of the terminal laser level. As a result, low-threshold and tunable continuous-wave Yb:GSO lasers were demonstrated. A slope efficiency up to 86% and a pumping threshold as low as 127 mW were achieved for a continuous-wave Yb:GSO laser at 1092.5 nm under the pump of a high-brightness laser diode. A continuous tunability between 1000 and 1120 nm was realized with an SF14 prism as the intracavity tuning element. (c) 2006 American Institute of Physics.
Resumo:
ZrO2, films were deposited by electron-beam evaporation with the oxygen partial pressure varying from 3 X 10(-3) Pa to I I X 10(-3) Pa. The phase structure of the samples was characterized by x-ray diffraction (XRD). The thermal absorption of the films was measured by the surface thermal lensing technique. A spectrophotometer was employed to measure the refractive indices of the samples. The laser-induced damage threshold (LIDT) was assessed using a 1064, nm Nd: yttritium-aluminium-garnet pulsed laser at pulse width of 12 ns. The influence of oxygen partial pressure on the microstructure and LIDT of ZrO2 films was investigated. XRD data revealed that the films changed from polycrystalline to amorphous as the oxygen partial pressure increased. The variation of refractive index at 550 nm wavelength indicated that the packing density of the films decreased gradually with increasing oxygen partial pressure. The absorptance of the samples decreased monotonically from 125.2 to 84.5 ppm with increasing oxygen partial pressure. The damage threshold, values increased from 18.5 to 26.7 J/cm(2) for oxygen partial pressures varying from 3 X 10(-3) Pa to 9 X 10(-3) Pa, but decreased to 17.3 J/cm(2) in the case of I I X 10(-3) Pa. (C) 2005 American Vacuum Society.
Resumo:
The laser-induced damage threshold (LIDT) and damage morphology of antireflection (AR) coatings on quartz and sapphire are investigated. A very interesting phenomena is found in the measurement. In the case of a single pulse laser, the LIDT of the AIR coatings on quartz is higher than that of sapphire. On the contrary, for a free-pulse laser, the LIDT of AIR coatings on sapphire is higher than that of quartz. (C) 2004 Society of Photo-Optical Instrumentation Engineers.
Resumo:
ZrO2 coatings were deposited on different substrates of Yb:YAG and fused silica by electron beam evaporation. After annealed for 12 h at 673 and 1073 K, respectively, weak absorption of coatings was measured by surface thermal lensing (STL) technique, and then laser-induced damage threshold (LIDT) was determined also. The crystalline phase of ZrO2 coatings and the size of the crystal grain were investigated by X-ray diffraction. It was found that microstructure of ZrO2 coatings was dependent on both annealing temperature and substrate structure, and coatings containing monoclinic phases had higher damage threshold than others. Due to the strong absorption of Yb:YAG, damage threshold of coatings on Yb:YAG was much less than that on fused silica. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
ZrO2, films were deposited by electron-beam evaporation with the oxygen partial pressure varying from 3 X 10(-3) Pa to I I X 10(-3) Pa. The phase structure of the samples was characterized by x-ray diffraction (XRD). The thermal absorption of the films was measured by the surface thermal lensing technique. A spectrophotometer was employed to measure the refractive indices of the samples. The laser-induced damage threshold (LIDT) was assessed using a 1064, nm Nd: yttritium-aluminium-garnet pulsed laser at pulse width of 12 ns. The influence of oxygen partial pressure on the microstructure and LIDT of ZrO2 films was investigated. XRD data revealed that the films changed from polycrystalline to amorphous as the oxygen partial pressure increased. The variation of refractive index at 550 nm wavelength indicated that the packing density of the films decreased gradually with increasing oxygen partial pressure. The absorptance of the samples decreased monotonically from 125.2 to 84.5 ppm with increasing oxygen partial pressure. The damage threshold, values increased from 18.5 to 26.7 J/cm(2) for oxygen partial pressures varying from 3 X 10(-3) Pa to 9 X 10(-3) Pa, but decreased to 17.3 J/cm(2) in the case of I I X 10(-3) Pa. (C) 2005 American Vacuum Society.
Resumo:
Negative ion element impurities breakdown model in HfO2 thin film was reported in this paper. The content of negative ion elements were detected by glow discharge mass spectrum analysis (GDMS); HfO2 thin films were deposited by the electron-beam evaporation method. The weak absorption and laser induced damage threshold (LIDT) of HfO2 thin films were measured to testify the negative ion element impurity breakdown model. It was found that the LIDT would decrease and the absorption would increase with increasing the content of negative ion element. These results indicated that negative ion elements were harmful impurities and would speed up the damage of thin film. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A number of 355-nm Al2O3/MgF2 high-reflectance (HR) coatings were prepared by electron-beam evaporation. The influences of the number of coating layers and deposition temperature on the 355-nm Al2O3/MgF2 HR coatings were investigated. The stress was measured by viewing the substrate deformation before and after coating deposition using an optical interferometer. The laser-induced damage threshold (LIDT) of the samples was measured by a 355-nm Nd:YAG laser with a pulse width of 8 ns. Transmittance and reflectance of the samples were measured by a Lambda 900 spectrometer. It was found that absorptance was the main reason to result in a low LIDT of 355-nm Al2O3/MgF2 HR coatings. The stress in Al2O3/MgF2 HR coatings played an unimportant role in the LIDT, although MgF2 is known to have high tensile stress.
Resumo:
We prepare HfO2 thin films by electron beam evaporation technology. The samples are annealed in air after deposition. With increasing annealing temperature, it is found that the absorption of the samples decreases firstly and then increases. Also, the laser-induced damage threshold (LIDT) increases firstly and then decreases. When annealing temperature is 473K, the sample has the highest LIDT of 2.17J/cm(2), and the lowest absorption of 18 ppm. By investigating the optical and structural characteristics and their relations to LIDT, it is shown that the principal factor dominating the LIDT is absorption.
Resumo:
A series of HR coatings, with and without overcoat, were prepared by electron beam evaporation using the same deposition process. The laser-induced damage threshold (LIDT) was measured by a 355 nm Nd:YAG laser with a pulse width of 8 ns. Damage morphologies of samples were observed by Leica-DMRXE Microscope. The stress was measured by viewing the substrate deformation before and after coatings deposition using an optical interferometer. Reflectance of the samples was measured by Lambda 900 Spectrometer. The theoretical results of electric field distributions of the samples were calculate by thin film design software (TFCalc). It was found that SiO2 overcoat had improved the LIDT greatly, while MgF2 overcoat had little effect on the LIDT because of its high stress in the HR coatings. The damage morphologies were different among HR coatings with and without overcoats. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Four kinds of Y2O3 stabilized ZrO2 (YSZ) thin films with different Y2O3 content have been prepared on BK7 substrates by electron-beam evaporation method. Structural properties and surface morphology of thin films were investigated by X-ray diffraction (XRD) spectra and scanning probe microscope. Laser induced damage threshold (LIDT) was determined. It was found that crystalline phase and microstructure of YSZ thin films was dependent on Y2O3 molar content. YSZ thin films changed from monoclinic phase to high temperature phase (tetragonal and cubic) with the increase of Y2O3 content. The LIDT of stabilized thin film is more than that of unstabilized thin films. The reason is that ZrO2 material undergoes phase transition during the course of e-beam evaporation resulting in more numbers of defects compared to that of YSZ thin films. These defects act as absorptive center and the original breakdown points. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
HfO2 films were deposited by electron beam evaporation with different deposition parameters. The properties such as refractive index, weak absorption, and laser induced damage thresholds (LIDTs) of these films have been investigated. It was found that when pulsed Nd:YAG 1064 nm laser is used to investigate LIDT of films: Metallic character is the main factor that influences LIDTs of films obtained from Hf starting material by ion-assisted reaction, and films prepared with higher momentum transfer parameter P have fewer metallic character; The ion-assisted reaction parameters are key points for preparing high LIDT films and if the parameters are chose properly, high LIDT films can be obtained. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
We investigate the laser damage behaviour of an electron-beam-deposited TiO2 monolayer at different process parameters. The optical properties, chemical composition, surface defects, absorption and laser-induced damage threshold (LIDT) of Elms are measured. It is found that TiO2 Elms with the minimum absorption and the highest LIDT can be fabricated using a TiO2 starting material after annealing. LIDT is mainly related to absorption and is influenced by the non-stoichiometric defects for TiO2 films. Surface defects show no evident effects on LIDT in this experiment.
Resumo:
TiO2 thin films are prepared on fused silica with conventional electron beam evaporation deposition. After annealed at different temperatures for 4h, the spectra and XRD patterns of the TiO2 thin film are obtained. Weak absorption of coatings is measured by the surface thermal lensing technique, and laser-induced damage threshold (LIDT) is determined. It is found that with the increasing annealing temperature, the transmittance of TiO2 films decreases. Especially when coatings are annealed at high temperature over 1173K, the optical loss is very serious. Weak absorption detection indicates that the absorption of coatings decreases firstly and then increases, and the absorption and defects play major roles in the LIDT of TiO2 thin films.
Resumo:
TiO2 films are deposited by electron beam evaporation as a function of oxygen partial pressure. The packing density, refractive index, and extinction coefficient all decrease with the increase of pressure, which also induces the change of the film's microstructure, such as the increase of voids and H2O concentration in the film. The laser-induced damage threshold (LIDT) of the film increases monotonically with the rise of pressure in this experiment. The porous structure and low nonstoichiometric defects absorption contribute to the film's high LIDT. The films prepared at the lowest and the highest pressure show nonstoichiometric and surface-defects-induced damage features, respectively.(C) 2007 American Institute of Physics.
Resumo:
Single layers and antireflection films were deposited by electron beam evaporation, ion assisted deposition and interrupted ion assisted deposition, respectively. Antireflection film of quite high laser damage threshold (18J/cm(2)) deposited by interrupted ion assisted deposition were got. The electric field distribution, weak absorption, and residual stress of films and their relations to damage threshold were investigated. It was shown that the laser induced damage threshold of film was the result of competition of disadvantages and advantages, and interrupted ion assisted deposition was one of the valuable methods for preparing high laser induced damage threshold films. (c) 2007 Optical Society of America