83 resultados para Surface Roughness.


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper reports an aggregation-based method for the fabrication of composite Au/Ag nanoshells with tunable thickness and surface roughness. It is found that the resultant roughened composite Au/Ag nanoshells can attract each other spontaneously to form films at the air-water interface. Importantly, such films can be transferred onto the solid substrates without being destroyed and show excellent surface-enhanced Raman scattering (SERS) enhancement ability. Their strong enhancement ability may stem from the unique two-dimensional structure itself.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The thickness of the gold film and its morphology, including the surface roughness, are very important for getting a good, reproducible response in the SPR technique. Here, we report a novel alternative approach for preparing SPR-active substrates that is completely solution-based. Our strategy is based on self-assembly of the gold colloid monolayer on a (3-aminopropyl)trimethoxysilane-modified glass slide, followed by electroless gold plating. Using this method, the thickness of films can be easily controlled at the nanometer scale by setting the plating time in the same conditions. Surface roughness and morphology of gold films can be modified by both tuning the size of gold nanoparticles and agitation during the plating. Surface evolution of the Au film was followed in real time by UV-vis spectroscopy and in situ SPRS. To assess the surface roughness and electrochemical stability of the Au films, atomic force microscopy and cyclic voltammetry were used. In addition, the stability of the gold adhesion is demonstrated by three methods. The as-prepared Au films on substrates are reproducible and stable, which allows them to be used as electrodes for electrochemical experiments and as platforms for studying SAMs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The surface of superground Mn-Zn ferrite single crystal may be identified as a self-affine fractal in the stochastic sense. The rms roughness increased as a power of the scale from 10(2) nm to 10(6) nm with the roughness exponent alpha = 0.17 +/- 0.04, and 0.11 +/- 0.06, for grinding feed rate of 15 and 10 mu m/rev, respectively. The scaling behavior coincided with the theory prediction well used for growing self-affine surfaces in the interested region for magnetic heads performance. The rms roughnesses increased with increase in the feed rate, implying that the feed rate is a crucial grinding parameter affecting the supersmooth surface roughness in the machining process.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the present paper a general analytic expression has been obtained and confirmed by a computer simulation which links the surface roughness of an object under study in an emission electron microscope and it's resolution. A quantitative derivation was made for the model case when there is a step on the object surface. It was shown that the resolution is deteriorated asymmetrically relative to the step. The effect sets a practical limit to the ultimate lateral resolution obtainable in an emission electron microscope.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A review is presented of the mechanics of microscale adhesion in microelectromechanical systems (MEMS). Some governing dimensionless numbers such as Tabor number, adhesion parameter and peel number for microscale elastic adhesion contact are discussed in detail. The peel number is modified for the elastic contact between a rough surface in contact with a smooth plane. Roughness ratio is introduced to characterize the relative importance of surface roughness for microscale adhesion contact, and three kinds of asperity height distributions are discussed: Gaussian, fractal, and exponential distributions. Both Gaussian and exponential distributions are found to be special cases of fractal distribution. Casimir force induced adhesion in MEMS, and adhesion of carbon nanotubes to a substrate are also discussed. Finally, microscale plastic adhesion contact theory is briefly reviewed, and it is found that the dimensionless number, plasticity index of various forms, can be expressed by the roughness ratio.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel super-hydrophobic stearic acid (STA) film with a water contact angle of 166° was prepared by chemical adsorption on aluminum wafer coated with polyethyleneimine (PEI) film. The micro-tribological behavior of the super-hydrophobic STA monolayer was compared with that of the polished and PEI-coated Al surfaces. The effect of relative humidity on the adhesion and friction was investigated as well. It was found that the STA monolayer showed decreased friction, while the adhesive force was greatly decreased by increasing the surface roughness of the Al wafer to reduce the contact area between the atomic force microscope (AFM) tip and the sample surface to be tested. Thus the friction and adhesion of the Al wafer was effectively decreased by generating the STA monolayer, which indicated that it could be feasible and rational to prepare a surface with good adhesion resistance and lubricity by properly controlling the surface morphology and the chemical composition. Both the adhesion and friction decreased as the relative humidity was lowered from 65% to 10%, though the decrease extent became insignificant for the STA monolayer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Successive thicker P(3MeTh) layers are analysed by ex situ conventional and imaging ellipsometry. Thin films display a smooth surface, are compact and homogeneous while for a growth charge above 20 mC cm(-2) the polymer structure modifies to a still uniform but less dense layer. A two-layer model is used and a mathematical procedure is developed to obtain, simultaneously, from the experimental ellipsometric parameters, Delta and Psi, the thickness and the complex refractive index of P(3MeTh) films grown up to 80 mC cm(-2). Thicker polymer layers are disordered and present a high degree of surface roughness. 

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The usual plasma spraying methods often involve entrainment of the surrounding air into the turbulent plasma core and result in coated materials having relatively high porosity and low adhesive strength. Therefore, exploration of new plasma spraying methods for fabricating high quality coatings to meet the requirement of special applications will be quite important. In this study, an alternative plasma spraying method, i.e. the low-pressure laminar plasma spraying process, is investigated and used in an attempt for spraying thermal barrier coatings (TBCs). Investigations on the characteristics of the laminar plasma jets, feeding methods for the ceramic powder and the formation process of the individual quenched splats have been carried out. The properties of the TBCs sprayed by laminar plasma jet process, such as the adhesive strength at the interface of the ceramic coating/bond coat, the surface roughness and microstructure, are examined by tensile tests and scanning electron microscope (SEM) observations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stiction in microelectromechanical systems (MEMS) has been a major failure mode ever since the advent of surface micromachining in the 80s of the last century due to large surface-area-to-volume ratio. Even now when solutions to this problem are emerging, such as self-assembled monolayer (SAM) and other measures, stiction remains one of the most catastrophic failure modes in MEMS. A review is presented in this paper on stiction and anti-stiction in MEMS and nanoelectromechanical systems (NEMS). First, some new experimental observations of stiction in radio frequency (RF) MEMS switch and micromachined accelerometers are presented. Second, some criteria for stiction of microstructures in MEMS and NEMS due to surface forces (such as capillary, electrostatic, van der Waals, Casimir forces, etc.) are reviewed. The influence of surface roughness and environmental conditions (relative humidity and temperature) on stiction are also discussed. As hydrophobic films, the self-assembled monolayers (SAMs) turn out able to prevent release-related stiction effectively. The anti-stiction of SAMs in MEMS is reviewed in the last part.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main factors influencing soil erosion include the net rain excess, the water depth, the velocity, the shear stress of overland flows, and the erosion-resisting capacity of soil. The laws of these factors varying with the slope gradient were investigated by using the kinematic wave theory. Furthermore, the critical slope gradient of erosion was driven. The analysis shows that the critical slope gradient of soil erosion is dependent on grain size, soil bulk density, surface roughness, runoff length, net rain excess, and the friction coefficient of soil, etc. The critical slope gradient has been estimated theoretically with its range between 41.5 degrees similar to 50 degrees.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Turbulent air flows over developing wind waves in the air-sea boundary layer are numerically simulated without considering wave breaking. Influences of wind waves on air flows are considered using a model of significant wave and surface roughness, with a formula proposed for calculating the surface roughness, k - epsilon model is adopted to simulate turbulent flows. The results of the drag coefficient and turbulence characteristics agree well with the observations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ZnO piezoelectric thin films were prepared on crystal substrate Si(111) by sol-gel technology, then characterized by scanning electron microscopy, X-ray diffraction and atomic force microscopy (AFM). The ZnO films characterized by X-ray diffraction are highly oriented in (002) direction with the growing of the film thickness. The morphologies, roughness and grain size of ZnO film investigated by AFM show that roughness and grain size of ZnO piezoelectric films decrease with the increase of the film thickness. The roughness dimension is 2.188-0.914 nm. The piezoelectric coefficient d(33) was investigated with a piezo-response force microscope (PFM). The results show that the piezoelectric coefficient increases with the increase of thickness and (002) orientation. When the force reference is close to surface roughness of the films, the piezoelectric coefficient measured is inaccurate and fluctuates in a large range, but when the force reference is big, the piezoelectric coefficient d(33) changes little and ultimately keeps constant at a low frequency.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The instability of the crack tip in brittle Mg-based bulk metallic glass (BMG) is studied. The formation of various fractographic surfaces of the BMG is associated with the instability of the fluid meniscus, which is due to viscous fluid matter being present on the fracture process zone. Depending on the values of the wavelength of the initial perturbation of the fluid meniscus and the local stress intensity factor, different fracture surface profiles, i.e. a dimple-like structure, a periodic corrugation pattern and a pure mirror zone are formed. The fractographic evolution is significantly affected by the applied stress. A decreased fracture Surface roughness is observed under a low applied stress. An increased fracture surface roughness, which has frequently been reported by other researchers, is also observed in the present studies under a high applied stress. Unique fractographic features are attributed to the non-linear hyperelastic stiffening for less softening) mechanism. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interface layer plays an important role in stress transfer in composite structures. However, many interface layer properties such as the modulus, thickness, and uniformity are difficult to determine. The model developed in this article links the influence of the interface layer on the normal stress distribution along the layer thickness with the layer surface morphology before bonding. By doing so, a new method of determining the interfacial parameter(s) is suggested. The effects of the layer thickness and the surface roughness before bonding on the normal stress distribution and its depth profile are also discussed. For ideal interface case with no interfacial shear stress, the normal stress distribution pattern can only be monotonically decreased from the interface. Due to the presence of interfacial shear stress, the normal stress distribution is much more complex, and varies dramatically with changes in the properties of the interface layer, or the dimensions of the bonding layers. The consequence of this dramatic stress field change, such as the shift of the maximum stress from the interface is also addressed. The size-dependent stress distribution in the thickness direction due to the interface layer effect is presented. When the interfacial shear stress is reduced to zero, the model presented in this article is also demonstrated to have the same normal stress distribution as obtained by the previous model, which does not consider the interface layer effect.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this research, asymmetrical cold rolling was produced by the difference in the coefficient of friction between rolls and sheets rather than the difference of roll radius or rotation speeds. The influence of friction coefficient ratio on the cross shear deformation, rolling pressure and torque was investigated using slab analysis. The results showed that the shear deformation zone length increased with the increase of the friction coefficient ratio. The rolling force decreased only under the condition that the friction coefficient ratio increased while the sum of the friction coefficients was held constant. As the reduction per pass was increased, the shear deformation zone length increased and the rolling force also increased. An increase of the front tension resulted in a decrease of the shear deformation zone length. An increase of back tension, however, led to an increase of the shear deformation zone length. The reduction of rolling torque for the work roll with higher surface roughness was greater than that for the work roll with lower surface roughness. (C) 2002 Elsevier Science B.V. All rights reserved.