149 resultados para Surface Plasmon, Impedance Spectroscopy
Resumo:
We used colloidal An to enhance the amount of antibody immobilized on a gold electrode and ultimately monitored the interaction of antigen-antibody by impedance measurement. Self-assembly of 6 nm (diameter) colloidal An onto the self-assembled monolayers (SAMs) of 4-aminothiophenol modified gold electrode resulted in an easier attachment of antibody. The redox reactions of [Fe(CN)(6)](4-)/[Fe(CN)(6)](3-) on the gold surface were blocked due to the procedures of self-assembly of 4-aminothiophenol and antibody immobilization, which were investigated by cyclic voltammetry and impedance spectroscopy. The interaction of antigen with grafted antibody recognition layers was carried out by soaking the modified electrode into a phosphate buffer at pH 7.4 with various concentrations of antigen at 37 degreesC for 30 min. The antibody recognition layers and their interactions with various concentrations of antigen could be detected by measurements of the impedance change. The results show that this method has good correlation for detection of Hepatitis B virus surface antigen in the range of 0.5-200 mug/l and a detection limit of about 50 ng/l.
Resumo:
Gold nanoparticles were used to enhance the immobilization amount and retain the immunoactivity of recombinant dust mite allergen Der f2 immobilized on a glassy carbon electrode (GCE). The interaction between allergen and antibody was studied by electrochemical impedance spectroscopy (EIS). Self-assembled Au colloid layer (Phi = 16 nm) deposited on (3-mercaptopropyl)trimethoxysilane (MPTS)-modified GCE offered a basis to control the immobilization of allergen Der f2. The impedance measurements were based on the charge transfer kinetics of the [Fe(CN)(6)](3-/4-) redox pair, compared with bare GCE, the immobilization of allergen Der f2 and the allergen-antibody interaction that occurred on the electrode surface altered the interfacial electron transfer resistance and thereby slowed down the charge transfer kinetics by reducing the active area of the electrode or by preventing the redox species in electrolyte solution from approaching the electrode. The interactions of allergen with various concentrations of monoclonal antibody were also monitored through the change of impedance response. The results showed that the electron transfer resistance increased with increasing concentrations of monoclonal antibody.
Resumo:
Ultrathin multilayer films have been prepared by means of alternate adsorption of iron(Ill)-substituted heteropolytungstate anions and a cationic redox polymer on the 4-aminobenzoic acid modified glassy carbon electrode surface based on electrostatic layer-by-layer assembly. Cyclic voltammetry, electrochemical impedance spectroscopy and UV-Vis absorption spectrometry have been used to easily monitor the uniformity of thus-formed multilayer films. Especially, the electrochemical impedance spectroscopy is successfully used to monitor the multilayer deposition processes and is a very useful technique in the characterization of multilayer films because it provides valuable information about the interfacial impedance features. All these results reveal regular film growth with each layer adsorption. The resulting multilayer films can effectively catalyze the reduction of H2O2,NO2- and BrO3-.
Resumo:
Thiol-terminated oligonucleotide was immobilized to gold surface by self-assembly method. A novel amplification strategy was introduced for improving the sensitivity of DNA. hybridization using biotin labeled protein-streptavidin network complex. This complex can be formed in a cross-linking network of molecules so that the amplification of the response signal will be realized due to the big molecular size of the complex. It could be proved from the impedance technique that this amplification strategy caused dramatic improvement of the detection sensitivity. These results give significant advances in the generality and sensitivity as it is applied to biosensing.
Resumo:
The combination of in situ surface plasmon resonance (SPR) with electrochemistry was used to investigate the electrochemical doping/dedoping processes of anions on a polyaniline (PAn)-modified electrode. Electrochemical SPR characteristics of the PAn film before and after doping/dedoping were revealed. The redox transformation between the insulating leucoemeraldine, and the conductive emeraldine, corresponding to the doping/dedoping of anion, can lead to very distinct changes in both the resonance minimum angle and the shape of SPR curve. This is ascribed to the swelling/shrinking effect, and the change of the PAn film in the imaginary part of the dielectric constant resulted from the transition of the film conductivity. In situ recording the time evolution of reflectance change at a fixed angle permits the continuous monitoring of the kinetic processes of doping/dedoping anions. The size and the charge of anions, the film thickness, as well as the concentration of anions are shown to strongly influence the rate of ingress/egress of anions. The time differential of SPR kinetic curves can be well applied in the detecting electroinactive anion by flow injection analysis. The approach has higher sensitivity and reproducibility compared with other kinetic measurements, such as those obtained by amperometry.
Resumo:
The combination of electrochemistry with surface plasmon resonance (SPR) has been used to characterize the growth of polyaniline (PAn) on a gold electrode surface during potential cycling. Potential-modulated SPR characteristics of the PAn film were also revealed. The potential switch between the oxidized and reduced states of PAn can lead to a large change of SPR response due to the variation in the imaginary part of the dielectric constant of PAn film resulting from the transition of the film in conductivity. The redox transition of the PAn film during potential cycling is very profitable to the SPR measurements. Two modes of SPR measurement, SPR angular scan (R-theta) and the time evolution of the reflectivity change at a fixed angle (R-t), were displayed to study the growth process of the PAn film. The angle shift of the resonance minimum recorded at each cathodic limit of cyclic potential scanning allows for the unambiguous measurement of the film growth. During cyclic potential scanning, the R-t curve was repeatedly modulated with the direction of the potential ramp as a result of the redox switch of the PAn film, and the amplitude of potential-modulated reflectivity change was well correlated with the cyclic number. The time differential of the R-t curve permits continuous monitoring of the film growth process. These results illustrate that the combined technique is suitable for studying the electropolymerization process of a conducting polymer.
Resumo:
Antibody was covalently immobilized by amine coupling method to gold surfaces modified with a self-assembled monolayer of thioctic acid. The electrochemical measurements of cyclic voltammetry and impedance spectroscopy showed that the hexacyanoferrate redox reactions on the gold surface were blocked due to the procedures of self-assembly of thioctic acid and antibody immobilization. The binding of a specific antigen to antibody recognition layer could be detected by measurements of the impedance change. A new amplification strategy was introduced for improving the sensitivity of impedance measurements using biotin labeled protein- streptavidin network complex. This amplification strategy is based on the construction of a molecular complex between streptavidin and biotin labeled protein. This complex can be formed in a cross-linking network of molecules so that the amplification of response signal will be realized due to the big molecular size of complex. The results show that this amplification strategy causes dramatic improvement of the detection sensitivity of hIgG and has good correlation for detection of hIgG in the range of 2-10 mug/ml. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The electrochemical impedance spectroscopy (EIS) at different potentials has been used to study the oxygen reduction reaction (ORR) in 3.5% NaCl solution on glassy carbon (GC) electrode in this work. Results show that ORR consists of three two-electron reaction steps and both superoxide ion (O-2(-)) and hydrogen peroxide (H2O2), which are produced by ORR, obstruct the diffusion of oxygen to the surface of the electrode and make the EIS results change into a transmissive finite diffusion process with the real part contraction and a reflective finite diffusion process from a semi-infinite diffusion process. The values of electron transfer resistance (R-t) and diffusion resistance (R-d) were calculated from EIS. O-2(-) influenced strongly on the Rt values and induced a maximum at -0.45 V.
Resumo:
Various Plasma Electrolytic Oxidation (PEO) ceramic coatings were prepared on LY12 aluminum alloy by adjusting the concentration of sodium silicate solution. Optical microscope (OM), XRD and EIS were used to study their morphology, composition and anti corrosion behavior in NaCl solution. Increasing concentration of sodium silicate leads to the increase of the total coating thickness while too high and too low concentration lead to the decrease of inner dense layer. The main composition of PEO coatings prepared in 20, 40 and above 60g/L concentration solution are correspondingly alumina, alumina with mullite, and amorphous phase. The corrosion resistance is determined by the inner dense layer. Increasing the thickness of inner dense layer can improve the anti-corrosion performance. PEO coating's corrosion resistance in acidic, alkaline and neutral NaCl solution is proved and the corrosion mechanism involved is also discussed.
Resumo:
Surface plasmon resonance (SPR) technology and the Biacore biosensor have been widely used to measure the kinetics of biomolecular interactions in the fluid phase. In the past decade, the assay was further extended to measure reaction kinetics when two counterpart molecules are anchored on apposed surfaces. However, the cell binding kinetics has not been well quantified. Here we report development of a cellular kinetic model, combined with experimental procedures for cell binding kinetic measurements, to predict kinetic rates per cell. Human red blood cells coated with bovine serum albumin and anti-BSA monoclonal antibodies (mAbs) immobilized on the chip were used to conduct the measurements. Sensor-grams for BSA-coated RBC binding onto and debinding from the anti-BSA mAb-immobilized chip were obtained using a commercial Biacore 3000 biosensor, and analyzed with the cellular kinetic model developed. Not only did the model fit the data well, but it also predicted cellular on and off-rates as well as binding affinities from curve fitting. The dependence of flow duration, flow rate, and site density of BSA on binding kinetics was tested systematically, which further validated the feasibility and reliability of the new approach. Crown copyright (c) 2008 Published by Elsevier Inc. All rights reserved.
Surface plasmon resonance transmission filters at 1053 nm based on metallic grating with narrow slit
Resumo:
Metallic gratings with narrow slits can lead to special optical properties such as strongly enhancing the transmission and considerably strengthening the polarized effect. A narrow-band filter suitable for application in optical communication is designed by sandwiching a metallic grating between two identical dielectric films. The maximum transmission can reach 96% after optimizing the parameters of films and grating at a central wavelength of 1053 nm. It is the first time, to our knowledge, that such high transmission has been reported since the discovery of the extraordinarily high transmission through periodic holes or slits; moreover, the extremely polarized effect is also found in P mode of this symmetric grating.
Resumo:
An indirect inhibitive surface plasmon resonance (SPR) immunoassay was developed for the microcystins (MCs) detection. The bioconjugate of MC-LR and bovine serum albumin (BSA) was immobilized on a CM5 sensor chip. A serial premixture of MC-LR standards (or samples) and monoclonal antibody (mAb) were injected over the functional sensor surface, and the subsequent specific immunoreaction was monitored on the BIAcore 3000 biosensor and generated a signal with an increasing intensity in response to the decreasing MCs concentration. The developed SPR immunoassay has a wide quantitative range in 1-100 mu g L-1. Although not as sensitive as conventional enzyme-linked immunosorbent assay (ELISA), the SPR biosensor offered unique advantages: (I) the sensor chip could be reusable without any significant loss in its binding activity after 50 assay-regeneration cycles, (2) one single assay could be accomplished in 50 min (including 30-min preincubation and 20-min BIAcore analysis), and (3) this method did not require multiple steps. The SPR biosensor was also used to detect MCs in environmental samples, and the results compared well with those obtained by ELISA. We conclude that the SPR biosensor offers outstanding advantages for the MCs detection and may be further developed as a field-portable sensor for real-time monitoring of MCs on site in the near future. (C) 2009 Published by Elsevier B.V.
Resumo:
The paper describes the rapid and label-free detection of the white spot syndrome virus (WSSV) using a surface plasmon resonance (SPR) device based on gold films prepared by electroless plating. The plating condition for obtaining films suitable for SPR measurements was optimized. Gold nanoparticles adsorbed on glass slides were characterized by transmission electron microscopy (TEM). Detection of the WSSV was performed through the binding between WSSV in solution and the anti-WSSV single chain variable fragment (scFv antibody) preimmobilized onto the sensor surface. Morphologies of the as-prepared gold films, gold films modified with self-assembled alkanethiol monolayers, and films covered with antibody were examined using an atomic force microscope (AFM). To demonstrate the viability of the method for real sample analysis, WSSV of different concentrations present in a shrimp hemolymph matrix was determined upon optimizing the surface density of the antibody molecules. The SPR device based on the electroless-plated gold films is capable of detecting concentration of WSSV as low as 2.5 ng/mL in 2% shrimp hemolymph, which is one to two orders of magnitude lower than the level measurable by enzyme-linked immunosorbant assays. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The ZnO films were grown on Ag/Si(001) substrates by sputtering Ag and ZnO targets successively in a pure Ar ambient. A significant enhancement of ZnO ultraviolet emission and a reduction of its full width of half maximum have been observed while introducing a 100 nm Ag interlayer between ZnO film and Si substrate. Furthermore, a complete suppression of the defect related visible emission was also found for the ZnO/Ag/Si sample. This improved optical performance of ZnO is attributed to the resonant coupling between Ag surface plasmon and ultraviolet emission of ZnO. (c) 2007 American Institute of Physics.