35 resultados para Single-photon
Resumo:
We present a generation condition for realizing high-Q TM whispering-gallery modes (WGMs) in semiconductor microcylinders. For microcylinders with symmetry or weak asymmetry vertical waveguiding, we show that TM WGMs can have a high Q factor, with the magnitude of 10(4) at the radius of the microcylinder of 1 mu m, by three-dimensional numerical simulation. The Q factor of TE WGMs is much less than that of TM WGMs in the semiconductor microcylinders due to a vertical radiation loss caused by mode coupling with the vertical propagating mode. The results open up a possible application of TM WGMs in semiconductor microcylinders for efficient current injection microlasers and single photon sources.
Resumo:
Fabrication of semiconductor nanostructures such as quantum dots (QDs), quantum rings (QRs) has been considered as the important step for realization of solid state quantum information devices, including QDs single photon emission source, QRs single electron memory unit, etc. To fabricate GaAs quantum rings, we use Molecular Beam Epitaxy (MBE) droplet technique in this report. In this droplet technique, Gallium (Ga) molecular beams are supplied initially without Arsenic (As) ambience, forming droplet-like nano-clusters of Ga atoms on the substrate, then the Arsenic beams are supplied to crystallize the Ga droplets into GaAs crystals. Because the morphologies and dimensions of the GaAs crystal are governed by the interplay between the surface migration of Ga and As adatoms and their crystallization, the shape of the GaAs crystals can be modified into rings, and the size and density can be controlled by varying the growth temperatures and As/Ga flux beam equivalent pressures(BEPs). It has been shown by Atomic force microscope (AFM) measurements that GaAs single rings, concentric double rings and coupled double rings are grown successfully at typical growth temperatures of 200 C to 300 C under As flux (BEP) of about 1.0 x 10(-6) Torr. The diameter of GaAs rings is about 30-50 nm and thickness several nm.
Resumo:
The characteristics of K alpha X-ray sources generated by p-polarized femtosecond laser-solid interactions are experimentally studied in the relativistic regime. By use of knife-edge image technique and a single-photon-counting X-ray CCD camera, we obtaine the source size, the spectrum and the conversion efficiency of the Ka X-ray sources. The experimental results show that the conversion efficiency of Ka photons reaches an optimum value of 7.08 x 10(-6)/sr at the laser intensity of 1.6 x 10(18) W/cm(2), which is different from the Reich's simulation results (Reich et al., 2000 Phys. Rev. Lett. 84 4846). We find that about 10% of laser energy is converted into the forward hot electrons at the laser intensity of 1.6 x 10(18) W/cm(2).
Resumo:
A high yielding rice variety mutant (Oryza sativa L., Zhenhui 249) with low chlorophyll b (Chl b) has been discovered in natural fields. It has a quality character controlled by a pair of recessive genes (nuclear gene). The partial loss of Chl b in content affects the efficiency of light harvest in a light harvest complex (LHC), thus producing the difference of the exciting energy transfer and the efficiency of photochemistry conversion between the mutant and wild-type rice in photosynthetic unit. The efficiency of utilizing light energy is higher in the mutant than that in the wildtype rice relatively. For further discussion of the above-mentioned difference and learning about the mechanism of the increase in the photochemical efficiency of the mutant, the pico-second resolution fluorescence spectrum measurement with delay-frame-scanning single photon counting technique is adopted. Thylakoid membranes of the mutant and the wild-type rice are excited by an Ar+ laser with a pulse width of 120 ps, repetition rate of 4 MHz and wavelength of 514 nm. Compared with the time and spectrum property of exciting fluorescence, conclusions of those ultrafast dynamic experiments are: 1) The speeds of the exciting energy transferred in photo-system I are faster than that in photo-system II in both samples. 2) The speeds of the exciting energy transfer of mutant sample are faster than those of the wildtype. This might be one of the major reasons why the efficiency of photosynthesis is higher in mutant than that in the wild-type rice.
Resumo:
Single photon Sagnac interferometry as a probe to macroscopic quantum mechanics is considered at the theoretical level. For a freely moving macroscopic quantum mirror susceptible to radiation pressure force inside a Sagnac interferometer, a careful analysis of the input-output relation reveals that the particle spectrum readout at the bright and dark ports encode information concerning the noncommutativity of position and momentum of the macroscopic mirror. A feasible experimental scheme to probe the commutation relation of a macroscopic quantum mirror is outlined to explore the possible frontier between classical and quantum regimes. In the Appendix, the case of Michelson interferometry as a feasible probe is also sketched.
Resumo:
The photofragmentation of C6H5I at 266 nn is investigated on the universal crossed molecular beam ma chine, and the translational spectroscopy as well as the angular distribution of I atom is measured. The results reveal that under the laser intensity of 10(R) W/cm(2) the single-photon dissociation competes with multi-photon processes. In single-photon dissociation the anisotropy parameter beta is 0.4 and the average translational energy is only 1.04 kcal/mol, which indicates that this process is a slow predissociation. In two-photon photofragmentation the average translational energy is 51.64 kcal/mol, which accounts for about 35% of the available energy. Another photofragmentation channel is even more faster, whose peak in time-of-flight spectra corresponds to four or five photon absorptions. The branching ratio of these three channels is determined to he about 3:3:4.
Resumo:
We report on the upconversion luminescence of a pure YVO4 single crystal excited by an infrared femtosecond laser. The luminescent spectra show that the upconversion luminescence comes from the transitions from the lowest excited states T-3(1), T-3(2) to the ground state (1)A(1) of the VO43-. The dependence of the fluorescence intensity on the pump power density of laser indicates that the conversion of infrared irradiation to visible emission is dominated by three-photon excitation process. We suggest that the simultaneous absorption of three infrared photons promotes the VO43- to excited states, which quickly cascade down to lowest excited states, and radiatively relax to ground states, resulting in the broad characteristic fluorescence of VO43-. (c) 2005 Optical Society of America.
Resumo:
We found that Ce3+:Lu2Si2O7 single crystals could be excited at 800 nm by using a femtosecond Ti:sapphire laser. The emission spectra of Ce3+:Lu2Si2O7 crystals were the same for one-photon excitation at 267 nm as for excitation at 800 nm. The emission intensity of Ce3+: Lu2Si2O7 crystals was found to depend on the cube of the laser power at 800 nm, consistent with simultaneous absorption of three 800 nm photons. The measured value of the three-photon absorption cross section is sigma'(3) = 2.44 x 10(-77) cm(6) s(2). (c) 2006 Optical Society of America.
Resumo:
A reproducible terahertz (THz) photocurrent was observed at low temperatures in a Schottky wrap gate single electron transistor with a normal-incident of a CH_3OH gas laser with the frequency 2. 54THz.The change of source-drain current induced by THz photons shows that a satellite peak is generated beside the resonance peak. THz photon energy can be characterized by the difference of gate voltage positions between the resonance peak and satellite peak. This indicates that the satellite peak exactly results from the THz photon-assisted tunneling. Both experimental results and theoretical analysis show that a narrow spacing of double barriers is more effective for the enhancement of THz response.
Resumo:
Using Nd: YAG laser (532 nm) pumped mixed-dye laser. we obtained the output of this dye enhanced at the wavelength interval equivalent to that given by the copper vapor laser pumped dye laser. This measure favored is with the measurement of single-color three-photon resonant ionization spectrum of atomic uranium in the range of 562-586 nm,which is otherwise not efficiently covered by Nd: YAG laser pumped dye laser with any single dye. Thus 140 U I energy levels were obtained and the peaks of interest 575.814 nm and 575.836 rim were well resolved and their relative intensity determined.
Resumo:
Near-infrared to UV and visible upconversion luminescence was observed in single-crystalline ZnO under an 800 nm infrared femtosecond laser irradiation. The optical properties of the crystal reveal that the UV and VIS emission band are due to the exciton transition (D0X) bound to neutral donors and the deep luminescent centers in ZnO, respectively. The relationship between the upconversion luminescence intensity and the pump power of the femtosecond laser reveals that the UV emission belongs to three-photon sequential band-to-band excitation and the VIS emission belongs to two-photon simultaneous defect-absorption induced luminescence. A saturation phenomenon and polarization-dependent effect are also observed in the upconversion process of ZnO. A very good optical power limiting performance at 800 nm has been demonstrated. The two- and three-photon absorption coefficients of ZnO crystal were measured to be 0.2018 cm GW(-1) and 7.102 x 10(-3) cm(3) GW(-2), respectively. The two- and three-photon cross sections were calculated to be 1.189 x 10(-51) cm(4) s and 1.040 x 10(-80) cm(6) s(2), respectively. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Hexagonal nanopillars with a single InGaAs/GaAs quantum well (QW) were fabricated on a GaAs (111) B substrate by selective-area metal-organic vapor phase epitaxy. The standard deviations in diameter and height of the nanopillars are about 2% and 5%, respectively. Zincblende structure and rotation twins were identified in both the GaAs and the InGaAs layers by electron diffraction. The excitation-power-density-dependent micro-photoluminescence (mu-PL) of the nanopillars was measured at 4.2, 50, 100 and 150 K. It was shown that, with increasing excitation power density, the mu-PL peak's positions shift to a higher energy, and their intensity and width increase, which were rationalized using a model that includes the effects of piezoelectricity, photon-screening and band-filling. It was also revealed that the rotation twins significantly reduce the diffusion length of the carriers in the nanopillars, compared to that in the regular semiconductors.
Resumo:
We have studied the Fano resonance in photon-assisted transport through a quantum dot. Both the coherent current and the spectral density of shot noise have been calculated. It is predicted that the shape of the Fano profile will also appear in satellite peaks. It is found that the variations of Fano profiles with the strengths of nonresonant transmissions are not synchronous in absorption and emission sidebands. The effect of interference on photon-assisted pumped current has also been investigated. We further predict the current and spectral density of shot noise as a periodic function of the phase, which exhibits an intrinsic property of resonant and nonresonant channels in the structures.