30 resultados para Sealing.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasing attentions have been paid to the subsurface geological storage for CO2 in view of the huge storage capacity of subsurface reservoirs. The basic requirement for subsurface CO2 storage is that the CO2 should be sequestrated as supercritical fluids (physical trapping), which may also interact with ambient reservoir rocks and formation waters, forming new minerals (chemical trapping). In order to the effective, durable and safe storage for CO2, enough storage space and stable sealing caprock with strong sealing capacity are necessitated, in an appropriate geological framework. Up till now, hydrocarbon reservoirs are to the most valid and appropriate CO2 storage container, which is well proven as the favorable compartment with huge storage capacity and sealing condition. The thesis focuses on two principal issues related to the storage and sealing capacity of storage compartment for the Qingshankou and Yaojia formations in the Daqingzijing block, Southern Songliao Basin, which was selected as the pilot well site for CO2-EOR storage. In the operation area, three facies, including deltaic plain, deltaic front and subdeep-deep lake facies associations, are recognized, in which 11 subfacies such as subaqueous distributary channel, river- mouth bar, interdistributary bay, sheet sandbody, crevasse splay and overflooding plain are further identified. These subfacies are the basic genetic units in the reservoir and sealing rocks. These facies further comprise the retrogradational and progradational depositional cycles, which were formed base- level rise and fall, respectively. During the regressive or lake lowstand stage, various sands including some turbidites and fans occurred mostly at the bottom of the hinged slope. During the progradation stage, these sands became smaller in size and episodically stepped backwards upon the slope, with greatly expanded and deeped lake. However, most of Cretaceous strata in the study area, localized in the basin centre under this stage, are mainly composed of grey or grizzly siltstones and grey or dark grey mudstones intercalated with minor fine sandstones and purple mudstones. On the base of borehole and core data, these siltstones are widespread, thin from 10 to 50 m thick, good grain sorting, and have relative mature sedimentary structures with graded bedding and cross- lamination or crossbeds such as ripples, which reflect strong hydrodynamic causes. Due to late diagenesis, pores are not widespread in the reservoirs, especially the first member of Qingshankou formation. There are two types of pores: primary pore and secondary cores. The primary pores include intergranular pores and micropores, and the secondary pores include emposieus and fracture pores. Throat channels related to pores is also small and the radius of throat in the first, second and third member of Qingshankou formation is only 0.757 μm, 0.802 μm and 0.631 μm respectively. In addition, based on analyzing the probability plot according to frequency of occurrence of porosity and permeability, they appear single- peaked distribution, which reflects strong hetero- geneity. All these facts indicate that the conditions of physical property of reservoirs are not better. One reason may be provided to interpret this question is that physical property of reservoirs in the study area is strong controlled by the depositional microfacies. From the statistics, the average porosity and permeability of microfacies such as subaqueous distributary channel, channel mouth bar, turbidites, is more than 9 percent and 1md respectively. On the contrary, the average porosity and permeability of microfacies including sand sheet, flagstone and crevasse splay are less than 9 percent and 0.2md respectively. Basically, different hydrodynamic environment under different microfacies can decide different physical property. According to the reservoir models of the first member of Qingshankou formation in the No. well Hei47 block, the character of sedimentary according to the facies models is accord to regional disposition evolution. Meantime, the parameter models of physical property of reservoir indicate that low porosity and low permeability reservoirs widespread widely in the study area, but the sand reservoirs located in the channels are better than other places and they are the main sand reservoirs. The distribution and sealing ability of fault- fractures and caprock are the key aspects to evaluate the stable conditions of compartments to store CO2 in the study area. Based on the core observation, the fractures widespread in the study area, especially around the wells, and most of them are located in the first and second member of Qingshankou formation, almost very few in the third member of Qingshankou formation and Yaojia formation instead. In addition, analyzing the sealing ability of eleven faults in the three-dimensional area in the study area demonstrates that most of faults have strong sealing ability, especially in the No. well Hei56 and Qing90-27. To some extent, the sealing ability of faults in the No. well Hei49, Qing4-6 and Qing84-29 are worse than others. Besides, the deposition environment of most of formations in the study area belongs to moderately deep and deep lake facies, which undoubtedly take advantage to caprocks composed of mudstones widespread and large scale under this deposition environment. In the study area, these mudstones distribute widely in the third member of Qingshankou formation, Yaojia and Nenjiang formation. The effective thickness of mudstone is nearly ~550m on an average with few or simple faults and fractures. In addition, there are many reservoir beds with widely- developed insulated interbeds consist of mudstones or silty mudstone, which can be the valid barrier to CO2 upper movement or leakage through diffusion, dispersion and convection. Above all, the closed thick mud caprock with underdeveloped fractures and reservoir beds can be taken regard as the favorable caprocks to provide stable conditions to avoid CO2 leakage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The petroleum migration, happening in the geologic past, is the very important and complex dynamic processes in the petroleum systems. It plays a linking role among all static factors in a system. The accumulation is in fact the result of the petroleum migration. For the petroleum geology, the dynamics research of the petroleum migration refers to the mechanism and process research, as well as the use of the quantitative methods. In this thesis, combining with the qualitative analysis and quantitative modeling, the author manages to discuss theoretically some key problems dealing with migration processes, which have not been solved yet, and to apply the studied results in petroleum system analysis in actual basins. The basin analysis offers the base of the numerical modeling for geological phenomena occurring in sedimentary basins, that consists of the sedimentary facies analysis, the section reconstructing technique, eroded thickness estimating, etc. The methods to construct the geologic model, which is needed in the research of oil and gas migration and accumulation, are discussed. The basin analysis offers also the possibility for the latter modeling works to get and select the parameters, such as stratum's thickness, age, stratigraphy etc. Modeling works were done by using two basin modeling softwares: Basin_Mod and TPC_Mod. The role of compaction during the secondary migration and the heterogeneity of migrating paths within the clastic carrier are modeled. And the conclusions were applied in the migration studies in the Jungaer Basin, lying on the Northwest part of the China. To construct a reliable migration model, the author studied the characteristics of the sedimentation, the pore fluid pressure evolution, as well as the distribution and the evolution of fluid potential, following the tectonic evolution of the Jungaer Basin. The geochemical prospecting results were used to evidence and to calibrate the migration processes: the oil-source correlation, the distribution of the properties of oil, gas and water. Finally, two important petroleum systems, Permian one and Jurassic one were studied and identified, according, principally, to the studies on the petroleum migration within the Jungaer Basin. Since the oil, as well as the gas, moves mainly in separate phase during the secondary migration, their migrating behaviors would be determined by the dynamics conditions of migration, including the driving forces and pathways. Based on such a consideration, the further understandings may be acquired: the roles played by permeable carriers and low-permeable source rock would be very different in compaction, overpressure generation, petroleum migration, and so on. With the numerical method, the effect of the compaction on the secondary migration was analyzed and the results show that the pressure gradient and the flux resulted from compaction are so small that could be neglected by comparing to the buoyancy of oil. The main secondary migration driving forces are therefore buoyancy and capillary within a hydrostatic system. Modeling with the commercial software-Basin_Mod, the migration pathways of petroleum in clastic carriers seem to be inhomogeneous, controlled by heterogeneity of the driving force, which in turn resulted from the topography of seals, the fabrics and the capillary pressure of the clastic carriers. Furthermore, the direct and indirect methods to study fault-sealing properties in the course of migration were systemically summarized. They may be characterized directly by lithological juxtaposition, clay smear and diagenesis, and indirectly the comparing the pressures and fluid properties in the walls at two apartments of a fault. In Jungaer Basin, the abnormal pressures are found in the formations beneath Badaowan or Baijantan Formation. The occurrence of the overpressure seems controlled by the stratigraphy. The rapid sedimentation, tectonic pressuring, clay sealing, chemical diagensis were considered as the principal pressuring mechanisms. The evolution of fluid pressure is influenced differently at different parts of the basin by the tectonic stresses. So the basin appears different pressure evolution cycles from each part to another during the geological history. By coupling the results of thermal evolution, pressure evolution and organic matter maturation, the area and the period of primary migration were acquired and used to determine the secondary migration time and range. The primary migration in Fengcheng Formation happened from latter Triassic to early Jurassic in the main depressions. The main period of lower-Wuerhe Formation was at latter Jurassic in Changji, Shawan and Pen-1-jing-xi Depression, and at the end of early Cretaceous in Mahu Depression. The primary migration in Badaowan and Sangonghe Formation is at the end of early-Cretaceous in Changji Depression. After then, the fluid potential of oil is calculated at the key time determined from area and time of the primary migration. Generally, fluid potential of oil is high in the depressions and low at the uplifts. Synthetically, it is recognized that the petroleum migration in the Jungaer Basin is very complex, that leads us to classify the evolution of petroleum systems in Northwestern China as a primary stage and a reformed one. The remigration of accumulated petroleum, caused by the reformation of the basin, results in the generation of multiple petroleum systems. The faults and unconformities are usually the linkers among the original petroleum systems. The Permian petroleum system in Jungaer Basin is such a multiple petroleum system. However, the Jurassic petroleum system stays still in its primary stage, thought the strong influences of the new tectonic activities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Halfgraben-like depressions have multiple layers of subtle traps, multiple coverings of oil-bearing series and multiple types of reservoirs. But these reservoirs have features of strong concealment and are difficult to explore. For this reason, many scholars contribute efforts to study the pool-forming mechanism for this kind of basins, and establish the basis for reservoir exploration and development. However, further study is needed. This paper takes HuiMin depression as an example to study the pool-forming model for the gentle slope belts of fault-depression lake basins. Applying multi-discipline theory, methods and technologies including sedimentary geology, structural geology, log geology, seismic geology, rock mechanics and fluid mechanics, and furthermore applying the dynamo-static data of oil reservoir and computer means in maximum limitation, this paper, qualitatively and quantitatively studies the depositional system, structural framework, structural evolution, structural lithofacies and tectonic stress field, as well as fluid potential field, sealing and opening properties of controlling-oil faults and reservoir prediction, finally presents a pool-forming model, and develops a series of methods and technologies suited to the reservoir prediction of the gentle slope belt. The results obtained in this paper richen the pool-forming theory of a complex oil-gas accumulative area in the gentle slope belt of a continental fault-depression basin. The research work begins with the study of geometric shape of fracture system, then the structural form, activity stages and time-space juxtaposition of faults with different level and different quality are investigated. On the basis of study of the burial history, subsidence history and structural evolution history, this paper synthesizes the studied results of deposition system, analyses the structural lithofacies of the gentle slope belt in the HuiMing Depression and its controlling roles to oil reservoir in the different structural lithofacies belts in time-space, and presents their evolution patterns. The study of structural stress field and fluid potential field indicates that the stress field has a great change from the Dong Ying stages to nowadays. One marked point among them is that the Dong Ying double peak- shaped nose structures usually were the favorable directional area for oil and gas migration, while the QuDi horst became favorable directional area since the GuanTao stage. Based on the active regular of fractures and the information of crude oil saturation pressure, this paper firstly demonstrates that the pool-forming stages of the LingNan field were prior to the stages of the QuDi field, whici provides new eyereach and thinking for hydrocarbon exploration in the gentle slope belt. The BeiQiao-RenFeng buried hill belt is a high value area with the maximum stress values from beginning to end, thus it is a favorable directional area for oil and gas migration. The opening and sealing properties of fractures are studied. The results obtained demonstrate their difference in the hydrocarbon pool formation. The seal abilities relate not only with the quality, direction and scale of normal stress, with the interface between the rocks of two sides of a fault and with the shale smear factor (SSF), but they relate also with the juxtaposition of fault motion stage and hydrocarbon migration. In the HuiMin gentle slope belt, the fault seal has difference both in different stages, and in different location and depth in the same stage. The seal extent also displays much difference. Therefore, the fault seal has time-space difference. On the basis of study of fault seal history, together with the obtained achievement of structural stress field and fluid potential field, it is discovered that for the pool-forming process of oil and gas in the studied area the fault seal of nowadays is better than that of the Ed and Ng stages, it plays an important role to determine the oil column height and hydrocarbon preservation. However, the fault seal of the Ed and Ng stages has an important influence for the distribution state of oil and gas. Because the influential parameters are complicated and undefined, we adopt SSF in the research work. It well reflects synthetic effect of each parameter which influences fault seal. On the basis of the above studies, three systems of hydrocarbon migration and accumulation, as well as a pool-forming model are established for the gentle slope belt of the HuiMin depression, which can be applied for the prediction of regular patterns of oil-gas migration. Under guidance of the pool-forming geological model for the HuiMin slope belt, and taking seismic facies technology, log constraint evolution technology, pattern recognition of multiple parameter reservoir and discrimination technology of oil-bearing ability, this paper develops a set of methods and technologies suited to oil reservoir prediction of the gentle slope belt. Good economic benefit has been obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper based on the example of mountain front tectonic belt of Tuha basin - a typical basin in west China, using geological, logging and seismic data, combining the two methods-comprehensive analysis of geological-geophysical data and numerical simulation together, studies the types of tectonic lithofacies and the mechanism of oil/gas accumulation in mountain front tectonic belt, and predicts favorable exploration areas. The tectonic lithofacies in periphery belt of compressional basin is systematically studied for the first time. The distribution and systematically analyzed with geological, logging and seismic data; the bury history of formations in the mountain front are restored with the back-stripping technique; the tectonic depression history of the mountain front is studied according to Airy Balanced Model; the tectonic evolution history is restored with the balanced section technique; according to the space composition of tectonic units and sedimentary systems of different geological time, the tectonic facies belt of the middle and lower Jurassic in the piedmont is divided into 12 types, and the controls of each type's tectonic lithofacies belt on the conditions of oil/gas generation, reservation and sealing are analyzed in depth. 3D numerical simulation and analysis is applied to the tectonic stress field in the hydrocarbon reservoir-forming-period for the first time. Because of the complex evolution of mountain front of Tuha basin, 3D numerical simulation of tectonic stress field in the hydrocarbon reservoir-forming-period helps to study the magnitude of the maximum principal stress, the minimum principal stress and the shear stress, the range and distribution of the principal stress, and controls of the upwards factors on the oil/gas migration and accumulation. Through the study on the oil-controlling fault's evolution, sealing mechanism and sealing history, the coupling of two effects of the fault-passage and sealing screen for oil/gas migration can be defined. Using the basic principle of petroleum system analysis, the paper systematically studies the hydrocarbon reservoir-forming mechanism and the time-space matching of the factors that affect the formation of reservoir, such as the space matching of active oil/gas matching of the active period of fault, the migration period of oil/gas and the formation period of trap. Through comprehensive analysis, the favorable exploration targets are selected in selected in the mountain front.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Godao area, located in the east of the Zhanhua depression of Jirang sag in Bohai Bay Basin, is the studying area in my dissertation. It is first time that fault sealing properties and the related relationship with the pool forming are studied in Gudao area. On the base of the analysis of the regional tectonics, the author has studied the tertiary structural evolution of the Gudao area and distinguished the fault's level and put forward the distinguishing principle. The geometrical feature, mechanical characters, developmental mechanism and history of the boundary faults in the tectonic unit of this area are all studied and emphasized especially. The buried history of oil-generating depression (that is Gudao depression) and the history of oil and gas migration simultaneously are discussed, the juxtaposition relationship between boundary fault evolutionary history and oil and gas migrated history are expatiated. To the geological condition of the Gudao area, three level faults sealing properties of this area were discussed in detail. Their characteristics of behavior and the intrinsic relationship between their sealing and oil and gas migrated reservoir are elucidated. The pool-forming models related to fault seal are exposed. The author has studied the lithologies of different order of faults, the relationship of occurrence assemblage analysis, normal stress of fault plane in different depth and shale smear factor faults. Then analysis their role in the various faults sealing and confirms fault sealing marks of three different orders faults and exposes the mechanism of fault sealing. Shale smear zone formed by first order fault in lasting activities is one different type of fault breccia and mainly controlled factor to its entrapment of petroleum. Effective sealing threshold value and fault displacement is ascertained. Mainly controlled factor of second fault sealing is bigger compressive stress loaded on fault plane. According to this, quantitatively evaluated index is given. Shale smear zone is necessary condition for second fault stress entrapment. The juxtaposed relationship between the different lithologies within third order faults is most important controlled factor for its sealing. Based on various order of fault sealing features and mechanism in Gudao area, the author proposed three orders of fault sealing models. Shale smear zone sealing model, normal stress sealing model and lithologies juxtaposed sealing model are suggested to first, second and third order fault respectively. The conclusion of this studying has not only the very important theoretical significance and practical value in Gudo area but also the very important guiding role for other areas of related aspects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the complex faulted-block oil reservoir of Xinzhen area in Dongying depression is systematically studied from basic conditions forming faulted-block oil and gas reservoir integrating geology, seismic, logging and reservoir engineering information and computer; guided by petroleum geology, geomechanics, structural geology and geophysics and other theories. Based on analysis of background condition such as regional strata, structure and petroleum geology, structural research on geometry, kinemaitcs and dynamics, oil-controlling fault research on the seal features, sealing mechanism and sealing pattern, and research on enrichment rules and controlling factors of complex faulted-block oil reservoir are carried out to give out the formation mechanics of oil reservoir of Xinzhen complex faulted-block oil reservoir. As a result, the reservoir formation pattern is established. At the same time, through dissecting the characteristics and hydrocarbon enrichment law of complex faulted-block oil reservoir, and studying its distribution law of remaining oil after entering extra high water-cut period, a set of technologies are formed to predict complex faulted-block oil reservoir and its remaining oil distribution and to enhance oil recovery (EOR). Based on the time relationship between migration of hydrocarbon and trap formation, accumulating period of Xinzhen oil reservoir is determined. The formation of Xinzhen anticlinal trap was prior to the primary migration. This is favorable to formation of Xinzhen anticlinal hydrocarbon reservoir. Meanwhile, because anticline top caving isn't at the sane time as that of moving or faulted-trap forming inner anticline, oil and gas migrated many times and Xinzhen complex faulted-block oil reservoir formed from ES_3~(upper) to EG. Accumulating law and controlling factors of complex faulted-block reservoir are analyzed from many aspects such as regional structure background controlling hydrocarbon accumulating, plastic arch-open structure controlling oil-bearing series and reservoir types, sealing-opening of fault controlling hydrocarbon distribution and structure pattern controlling enriched trap types. Also, we established the structure pattern in Xinzhen a'ea: the arch-open of underlying strata cause expanding fracture. The main block groups developed here are shovel-like normal fault block group in the north area of Xinzhen and its associated graben block group. Block groups dominate the formation and distribution of reservoirs. We studied qualitatively and quantitatively the sealing characteristics, sealing history and sealing mechanism of faults, too. And, the sealing characteristics are evaluated and the distribution pattern of hydrocarbon controlled by faults is researched. Due to movement intensity of big faults, deep falling of downthrown block, high degree of repture and development of fracture, shallow layers close to the downthrown block of secondary faults are unfavorable to hydrocarbon accumulation. This is confirmed by the exploration practice in Xinzhen anticline. In terms of the downthrown blocks of sencondary contemporaneous faults lied in the south and north area of Xinzhen, hydrocarbon is poor close to fracture belt, while it is relatively abundant in tertiary companion faults. Because of long-term movement of faults that control hydrocarbon, fi'om ES3 to EG, six set of oil-bearing series formed. And their opening causes the inhomogeneity in hydrocarbon abundance among each block--in two flanks of anticline reservoirs are abundant while in the axial area, oil and gas are sporadic. There the sealing characteristics control oil-bearing area of oil/gas accumulation and the height of oil reservoir. Longitudinally, oil and gas are enriched in dip-flat areas in mid-plane of faults. It is established that there are four types of accumulating patterns in complex faulted-block oil reservoirs in Xinzhen. The first is accumulating pattern of lithologic oil reservoirs in E~S_3~(mid-lowwer), that is, self-generating-self-reserving-self-covering lithologic trap pattern. The second is drag-anticline accumulating pattern in Xinzhen. The structure traps are drag anticlines formed by the contemporaneous faults of the second basement in the north of Xinzhen, and the multiple source rocks involve Ek_2, Es_4, Es_3 and Es_1 members. The reservoirs are fluvial-delta sandstones of the upper member of Shahejie formation and Guantao formation, covered by regional thick mudstone of the upper member of Guantao formation and MingHuazhen formation. The third is the accumulating pattern of reverse listric fault, the third-degree fault of Xinzhen anticline limb and the reservoirs form reservoir screened by reverse listric faults. The forth is accumulating pattern of crossing faults which form closing or semi-closing faulted-blocks that accumulate hydrocarbon. The technologies of predicting remaining oil in complex faulted-block reservoir during the mid and late development stage is formed. Remaining oil in simple large faulted-blocks enriches in structural high, structural middle, structural low of thick bottom water reservoirs, points near bent edge-fault oftertiary faults and part the fourth ones with big falling displacement, microstructure high place of oil-sandbodies and areas where local well pattern isn't perfect. While that in small complex faulted-blocks enriches near small nose, small high point, angle of small faults, small oil-bearing faulted-blocks without well and areas with non-perfect well pattern. The technologies of enhancing recovery factor in complex faulted-block reservoir during the mid and late development stage is formed as follows: fine reservoir description, drilling adjust wells, designing directional wells, sub-dividing layer series of development, improving flooding pattern, changing water-injection direction and enhancing swept volume, cyclic waterflooding and gas-injection, etc. Here, directional wells include directional deflecting wells, lateral-drilling wells, lateral-drilling horizontal wells and horizontal wells. The results of this paper have been used in exploration and development of Shengli oilfield, and have achieved great social and economic profit, especially in predicting distribution of complex faulted-block reservoir, remaining oil distribution during middle and late stage of development, and in EOR. Applying the achievement of fault-closure research, new hydrocarbon-bearing blocks are discovered in flanks of Dongying central uplift and in complex blocks with proved reserves 15 million tons. With the study of remaining oil distribution law in complex faulted-block reservoirs, recovery factors are increased greatly in Dongxin, Xianhe and Linpan complex faulted-block reservoirs and accumulated oil production increment is 3 million tons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to developing reservoir of Upper of Ng at high-speed and high-efficient in Chengdao oilfield which is located in the bally shallow sea, the paper builds up a series of theory and means predicting and descripting reservoir in earlier period of oilfield development. There are some conclusions as follows. 1. It is the first time to form a series of technique of fine geological modeling of the channel-sandy reservoir by means of mainly seismic methods. These technique include the logging restriction seismic inversion, the whole three dimension seismic interpretation, seismic properties analysis and so on which are used to the 3-dimension distributing prediction of sandy body, structure and properties of the channel reservoir by a lot of the seismic information and a small quantity of the drilling and the logging information in the earlier stage of the oil-field development. It is the first time that these methods applied to production and the high-speed development of the shallow sea oilfield. The prediction sandy body was modified by the data of new drilling, the new reservoir prediction thinking of traced inversion is built. The applied effect of the technique was very well, according to approximately 200 wells belonging to 30 well groups in Chengdao oilfield, the drilling succeeded rate of the predicting sandy body reached 100%, the error total thickness only was 8%. 2. The author advanced the thinking and methods of the forecasting residual-oil prediction at the earlier stage of production. Based on well data and seismic data, correlation of sediment units was correlated by cycle-correlation and classification control methods, and the normalization and finely interpretation of the well logging and sedimentation micro-facies were acquired. On the region of poor well, using the logging restriction inversion technique and regarding finished drilling production well as the new restriction condition, the sand body distributing and its property were predicted again and derived 3-dimension pool geologic model including structure, reservoir, fluid, reservoir engineering parameter and producing dynamic etc. According to the reservoir geologic model, the reservoir engineering design was optimized, the tracking simulation of the reservoir numerical simulation was done by means of the dynamic data (pressure, yield and water content) of development well, the production rule and oil-water distributing rule was traced, the distributing of the remaining oil was predicted and controlled. The dynamic reservoir modeling method in metaphase of development was taken out. Based on the new drilling data, the static reservoir geologic model was momentarily modified, the research of the flow units was brought up including identifying flow units, evaluating flow units capability and establishing the fine flow units model; according to the dynamic data of production and well testing data, the dynamic tracing reservoir description was realized through the constant modification of the reservoir geologic model restricted these dynamic data by the theory of well testing and the reservoir numerical simulation. It was built the dynamic tracing reservoir model, which was used to track survey of the remaining oil on earlier period. The reservoir engineering tracking analysis technique on shallow sea oilfield was founded. After renewing the structure history since tertiary in Chengdao area by the balance section technique and estimating the activity character of the Chengbei fault by the sealing fault analysis technique, the meandering stream sediment pattern of the Upper of Ng was founded in which the meandering border was the uppermost reservoir unit. Based on the specialty of the lower rock component maturity and the structure maturity, the author founded 3 kinds of pore structure pattern in the Guanshang member of Chengdao oil-field in which the storing space mainly was primary (genetic) inter-granular pore, little was secondary solution pore and the inter-crystal pore tiny pore, and the type of throat mainly distributed as the slice shape and the contract neck shape. The positive rhythmic was briefly type included the simple positive rhythm, the complex positive rhythm and the compound rhythm. Interbed mainly is mudstone widely, the physical properties and the calcite interbed distribute localized. 5. The author synthetically analyzed the influence action of the micro-heterogeneity, the macro-heterogeneity and the structure heterogeneity to the oilfield water flood development. The efficiency of water flood is well in tiny structure of convex type or even type at top and bottom in which the water breakthrough of oil well is soon at the high part of structure when inject at the low part of structure, and the efficiency of water flood is poor in tiny structure of concave type at top and bottom. The remaining oil was controlled by sedimentary facies; the water flooding efficiency is well in the border or channel bar and is bad in the floodplain or the levee. The separation and inter layer have a little influence to the non-obvious positive rhythm reservoir, in which the remaining oil commonly locate within the 1-3 meter of the lower part of the separation and inter layer with lower water flooding efficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The central uplift in the Huimin depression is famous for its large amounts of faults and small-scale fault-block area, and it is the famed typical complicated fault-block group oil & gas field in the whole world. After many years of rolling exploration and exploitation, many complex oil &gas field have been discovered in the central uplift, and won the splendent fruit. With the gradual deepening and development of the rolling exploitation, the exploration faces more and more difficulties. Therefore, it is important to reveal the forming mechanism and distributing rule of the complex fault-block reservoir, and to realize the forecast of the complex fault-block reservoir, sequentially, expedite the exploration step. This article applies the new multi-subject theory, method and technique such as structure geometry, kinematics, dynamics, structural stress field, fluid potential field, well logging record and constrained inversion of seismic records, coherence analysis, the seal mold and seal history of oil-bounded fault etc, and try to reveal the forming mechanism and distributing law of the complex fault-block reservoir, in result, implements the forecast of the fault-block reservoir and the remaining oil distributing. In order to do so, this article synthetically carries out structural estimate, reservoir estimate, fault sealing history estimate, oil-bearing properties estimate and residual. This article also synthetically researches, describes and forecast the complex fault-block in Huimin depression by use of the techniques, e.g. seismetic data post-stack processing technique, multi-component demarcating technique, elaborate description technique for the fault-block structure, technique of layer forecasting, fault sealing analysis technique, comprehensive estimate technique of fault-block, comprehensive analysis and estimate technique of remaining oil etc. The activities of the faults varies dramatically in the Huimin depression, and most of the second-class and the third-class faults are contemporaneous faults, which control the macroscopical distribution of the reservoir in the Huimin depression. The fourth-class faults cause the complication between the oil & gas among the fault-blocks. The multi-period strong activities of the Linyi fracture resulted in the vertical migration of large amount of oil & gas along with the faults. This is the main reason for the long vertical distribution properties near the Linyi fracture in the Huimin depression. The sealing ability of the fault is controlled by the property,size and direction of the main stress, the contact relationship of the both sides of the fault, the shale polluting factor, and the configuration relationship between the fault move period and the migration period of oil & gas. The article suggest four fault-sealing modes in the research zone for the first time, which establishes the foundation for the further forecast of the complex fault-block reservoir. Numerical simulation of the structural stress field reveals the distribution law and the evolvement progress of the three-period stress field from the end of the Dongying period to the Guantao period to nowadays. This article puts forward that the Linyi and Shanghe regions are the low value of the maximum main stress data. This is combined with the fault sealing history estimate, then multi-forming-reservoir in the central uplift is put forward. In the Shanghe oilfield, the article establishes six reservoir geological modes and three remaining oil distributing modes(the plane, the inside layer and the interlayer), then puts forward six increase production measure to enhance the remaining oil recovery ratio. Inducting the exploitation of oilfield, it wins notable economic effects and social effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is the key project of SINOPEC at ninth five years period with a lot of work and very difficult, which the main object are the study of pool-forming mechanism, distribution rule and pool-forming model of complex secondary pool at Dongying formation in high mature exploration area, and building theories and methods of research, description and prediction of secondary fault block pool. This paper apply comprehensively with various theories, method and techniques of geology, seismic, well log, reservoir engineering, meanwhile apply with computer means, then adopt combination of quality and quantitative to develop studies of pool-forming mechanism, model and pool prediction of fault block pool. On the based of stretch, strike-slip, reversal structure theories, integrated the geometry, kinematics, and dynamics of structure, it is show that the structure framework, the structure evolve, formation mechanism of central uplift belt of Dongying depression and control to formation and distribute of secondary complex fault block pool. The opening and sealing properties, sealing mechanism and sealing models of pool-controlling fault are shown by using quality, direction of normal stress, relations between interface and rock of two sides of fault and shale smear factor (SSF), as well as the juxtaposition of fault motion stage and hydrocarbon migration, etc. The sealing history of controlling fault, formation mechanism and distribute the regulation are established by combining together with bury history, structure evolve history, fault growth history stress field evolve history, which can be guide exploration and production oil field. It were bring up for the first time the dynamics mechanism of Dongying central uplift which were the result of compound tress field of stretch, strike-slip and reversal, companion with reversal drag structure, arcogenesis of paste and salt beds. The dual function of migration and sealing of fault were demonstrated in the research area. The ability of migration and sealing oil of pool-controlling fault is controlled by those factors of style of fault combination, activity regulation and intensity of fault at the period of oil migration. The four kinds of sealing model of pool-controlling fault were established in the research area, which the sealing mechanism of fault and distribution regulation of oil in time and space. The sealing ability of fault were controlled by quality, direction of normal stress, relations between interface and rock of two sides of fault and shale smear factor (SSF), as well as the juxtaposition of fault motion stage and hydrocarbon migration, etc. The fuzzy judge of fault sealing is the base of prediction of secondary pool. The pool-forming model of secondary was established in the research area, which the main factors are ability migration and sealing. The transform zone of fault, inner of arc fault and the compound area of multi fault are enrichment region of secondary pool of Dongying formation, which are confirm by exploration with economic performance and social performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The discovery of the highly productive Renqiu buried hill reservoir in Bohai Bay Basin in 1975 started the high tide of finding buried hill reservoirs in China and their research. As the advance of E&P technologies, the study of buried hill reservoir in China had a qualitative leap. The reservoir description and some other aspects of development have reached or approached to the international leading level. However, some core techniques for reservoir study such as structure & faulting system study, formation prediction and connection study and heterogeneous model's construction could not completely carry out the quantitative or accurate reservoir description, e. g. the areal distribution of porosity, permeability and oil saturation. Especially, the modeling for reservoir simulation is still wandering in the stage of simplicity. The inaccurate understanding of geology could not derive 3D heterogeneous geological model that can reveal the actual underground situation thus could not design practical and feasible oilfield development plan. Therefore, the problems of low oil recovery rate, low recovery factor and poor development effectiveness have not been solved. The poor connection of the reservoir determined that waterflooding could not get good development effect and the production had to depend on the reservoir elastic energy, and this will bring big difficulty for development modification and improvement of oil recovery. This study formed a series of techniques for heterogeneous model research that can be used to construct heterogeneous model consistent with the reservoir geology. Thus the development effectiveness, success ratio of drilling and percent of producing reserves can be enhanced. This study can make the development of buried hill reservoir be of high recovery rate and high effect. The achievements of this study are as follows: 1. Evaluated the resources, summarized the geological characteristics and carried out the reservoir classification of the buried hill reservoirs in Shengli petroliferous area; 2. Established the markers for stratigraphical correlation and formed the correlation method for complex buried hill reservoirs; 3. Analyzed the structural features of the buried hill reservoirs, finished the structure interpretation and study of faulting system using synthetic seismograms, horizontal slices and coherent analysis, and clarified structural development history of the buried hill reservoirs in Shengli petroliferous area; 4. Determined the 3 classes and 7 types of pore space and the main pore space type, the logging response characteristics and the FMI logging identified difference between artificial and natural fractures by the comprehensive usage of core analysis, other lab analyses, conventional logging, FMI logging and CMR logging; 5. Determined the factors controlled the growth of the fractures, vugs and cavities, proposed the main formation prediction method for buried hill reservoir and analyzed their technical principium and applicability, and formed the seismic method and process for buried hill reservoir description; 6. Established the reserve calculation method for buried hill reservoirs, i. e. the reserves of fractures and matrix are calculated separately; the recoverable reserves are calculated by decline method and are classified by the SPE criteria; 7. Studied restraining barriers and the sealing of the faults thus clarified the oil-bearing formations of the buried hill reservoirs, and verified the multiple reservoir forming theory; 8. Formed reasonable procedure of buried hill reservoir study; 9. Formed the 3 D modeling technology for buried hill reservoirs; 10. Studied a number of buried hill blocks on the aspects of reservoir description, reservoir engineering and development plan optimization based on the above research and the profit and social effect are remarkable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is belonging to Chinese Petrochemical Corporation's key project. Although it is difficult and great workload, it has important theoretical and practical value. Its targets is to establish 4 dimension stress fields of complex fault block groups, and then to predict the forming mechanism and distribution rule of petroleum pools, by applying the most advanced theories, methods and technology and the most sophisticated software in highly explored zones. By means of multi-discipline theories, methods, technologies and multi-source information, using computer with maximum efforts, investigating the strata framework, structure framework, petroleum pool forming mechanism and forming mode of complex fault block groups, several results have been achieved as following: The fastigiated mode of Xianhe complex fault block groups was established, pointed out the control function of pool accumulate in Xianhe complex fault block groups Xianhe fastigiated complex fault block groups are the results of combining stress of extending, slipping and reversing, which formed in early Shahejie stage, changed and perplexed during Dongying stage and that control the forming and destruction of petroleum pools. By measuring the earth stress and rock mechanics parameters in the research region, the model of 4 dimension stress field and potential fields of migrating fluids was established from ES3 stage to current, with their space distribution and time evolve and petroleum accumulate. The fault-sealing model in Xianhe complex fault block groups was established, which reveal the sealing mechanism of petroleum about control-fault, made for petroleum pool prediction in complex fault block. The petroleum pool forming mode and mechanism in complex fault block was established. Petroleum distribution were predicted in three stress inverse zones, and remaining oil were point out in the high points of 2 micro-structures and the region with strong fault-sealing capabilities. (6). A set of theories, technology and methods of complex fault block petroleum pool have been developed, bring on an improvement of the development geology theory in continental fault depression lake basin, good economic benefits have been obtained by applying on both east and west areas of our country.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The research area of this paper covers the maximum exploration projects of CNPC, including Blocks 1/2/4 and Block 6 of the Muglad basin and the Melut basin in Bocks 3/7 in Sudan. Based on the study of the evolution history of the Central African Shear Zone (CASZ), structural styles and filling characteristics of the rift basins, it is put forward that the rift basins in Sudan are typical passive rift basins undergoing the strike-slip, extension, compression and inversion since the Cretaceous. The three-stage rift basins overlapped obliquely. The extension and rifting during the Early Cretaceous is 50-70% of the total extension. The features of the passive rift basins decided that there is a single sedimentary cycle and one set of active source rocks within the middle. Influenced by the three-stage rifting and low thermal gradient, hydrocarbon generation and charging took place very late, and the oil pool formation mechanism is very unique from the Lower Cretaceous rift sequences to the Paleogene. The reservoir-seal assemblages are very complicated in time and space. The sealing capacity of cap rocks was controlled by the CASZ. In general the oils become heavier towards the CASZ and lighter far away. The oil biodegradation is the reason causing the high total acid number. The determination of effective reservoir depth ensures that all discovered fields up to now are high-production fields. The propagation and growth of boundary faults in the rift basins can be divided into a simple fault propagation pattern and a fault growth-linkage pattern. It is firstly found that the linkage of boundary fault segments controls the formation of petroleum systems. Three methods have been established to outline petroleum systems. And a new classification scheme of rift-type petroleum system has been put forward: pre-rift, syn-rift (including passive and active) and post-rift petroleum systems. This scheme will be very important for the further exploration of rift basins. This paper firstly established the formation models of oil pools for the passive rift basins in Sudan: the coupling of accommodation zones and main plays for the formation of giant fields. The overlapping of late rifting broke the anticlines to be several fault-blocks. This process determined that anti-fault blocks are the main traptypes in the cretaceous sequences and anticlines in the Paleogene. This can explain why the traptypes are different between the Muglad and Mefut basins, and will provide theoretic guidance for the exploration strategy. The established formation mechanism and models in this paper have had great potential guidance and promotion for the exploration in Sudan, and resulted in significant economic and social benefit. A giant field of 500 million tons oil in place was found 2003. The cost in Blocks 3/7 is only 0.25

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By applying multi-discipline theory and methods comprehensively and with full use of computer, the paper deeps into studying changing rule and control factor of fluid field of ES2 Shengtuo oil field during waterflood development, physical and chemical function, and stress. Matrix field, network field, fluid field, stress field and physical chemistry field and fluid model for dynamic function were established. Macroscopic and microscopic genesis mechanics, distribution rule and control factor of remaining oil were revealed. Remaining oil and emulate model were established. Macroscopic and microscopic distribution rule of mover remaining oil were predicted, several results were achieved as following: The distribution of remaining oil was controlled by micro-structure. At the same development stage, remaining oil saturation of the wells located in higher position of micro-structure is higher than the average saturation in the same layer. The water content ratio has same law. It is the enrichment district that the high position of micro-structure controlled by seal faults. The remaining oil distribution was affected by sedimentary micro-facies, micro-structure, fault sealing, reservoir heterogeneity and affusion-oil extraction. On the plane, the zone owning higher saturation of remaining oil is the area that at the edge miacro-facies and sand-body distribution discontinuously; on the section, the content of waterflood of the upper or middle-upper oil layer of positive rhythm and positive comprehensive rhythm is lower, middle and weak waterflood is main, remaining oil is in enrichment relatively. The remaining oil is relative enrichment at the zones of well network of affusion and oil extraction not affected. 4D dynamic model of reservoir of Es2in Shengtuo oil field was established. Macroscopic and microscopic forming mechanics, distribution rule and control factor were revealed. The emulate model of dynamic function of Shengtuo oil field was established, the space distribution of remaining oil were predicted. Reservoir flow field, matrix field, network field, seep field, physical and chemical field, stress field and fluid field models were established. Reservoir flow field character and distribution were revealed. An improvement of the development geology theory in continental fault depression continental basin was brought on.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to discover the distribution law of the remaining oil, the paper focuses on the quantitative characterization of the reservoir heterogeneity and the distribution law of the fluid barrier and interbed, based on fine geological study of the reservoir in Liuhuall-1 oil field. The refined quantitative reservoir geological model has been established by means of the study of core analysis, logging evaluation on vertical well and parallel well, and seismic interpretation and prediction. Utilizing a comprehensive technology combining dynamic data with static data, the distribution characteristics, formation condition and controlling factors of remaining oil in Liuhuall-1 oil field have been illustrated. The study plays an important role in the enrichment regions of the remaining oil and gives scientific direction for the next development of the remaining oil. Several achievements have been obtained as follows: l.On the basis of the study of reservoir division and correlation,eight lithohorizons (layer A, B_1, B_2, B_3, C, D, E, and F) from the top to the bottom of the reservoir are discriminated. The reef facies is subdivided into reef-core facies, fore-reef facies and backreef facies. These three subfacies are further subdivided into five microfacies: coral algal limestone, coralgal micrite, coral algal clastic limestone, bioclastic limestone and foraminiferal limestone. In order to illustrate the distribution law of remaining oil in high watercut period, the stratigraphic structure model and sedimentary model are reconstructed. 2.1n order to research intra-layer, inter-layer and plane reservoir heterogeneity, a new method to characterize reservoir heterogeneity by using IRH (Index of Reservoir Heterogeneity) is introduced. The result indicates that reservoir heterogeneity is medium in layer B_1 and B_3, hard in layer A, B_2, C, E, poor in layer D. 3.Based on the study of the distribution law of fluid barrier and interbed, the effect of fluid battier and interbed on fluid seepage is revealed. Fluid barrier and interbed is abundant in layer A, which control the distribution of crude oil in reservoir. Fluid barrier and interbed is abundant relatively in layer B_2,C and E, which control the spill movement of the bottom water. Layer B_1, B_3 and D tend to be waterflooded due to fluid barrier and interbed is poor. 4.Based on the analysis of reservoir heterogeneity, fluid barrier and interbed and the distribution of bottom water, four contributing regions are discovered. The main lies on the north of well LH11-1A. Two minors lie on the east of well LH11-1-3 and between well LH11-1-3 and well LH11-1-5. The last one lies in layer E in which the interbed is discontinuous. 5.The parameters of reservoir and fluid are obtained recurring to core analysis, logging evaluation on vertical well and parallel well, and seismic interpretation and prediction. Theses parameters provide data for the quantitative characterization of the reservoir heterogeneity and the distribution law of the fluid barrier and interbed. 6.1n the paper, an integrated method about the distribution prediction of remaining oil is put forward on basis of refined reservoir geological model and reservoir numerical simulation. The precision in history match and prediction of remaining oil is improved greatly. The integrated study embodies latest trend in this research field. 7.It is shown that the enrichment of the remaining oil with high watercut in Liuhua 11-1 oil field is influenced by reservoir heterogeneity, fluid barrier and interbed, sealing property of fault, driving manner of bottom water and exploitation manner of parallel well. 8.Using microfacies, IRH, reservoir structure, effective thickness, physical property of reservoir, distribution of fluid barrier and interbed, the analysis of oil and water movement and production data, twelve new sidetracked holes are proposed and demonstrated. The result is favorable to instruct oil field development and have gotten a good effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inexpensive and permanently modified poly(methyl methacrylate)(PMMA) microchips were fabricated by an injection-molding process. A novel sealing method for plastic microchips at room temperature was introduced. Run-to-run and chip-to-chip reproducibility was good, with relative standard deviation values between 1-3% for the run-to-run and less than 2.1% for the chip-to-chip comparisons. Acrylonitrile-butadiene-styrene (ABS) was used as an additive in PMMA substrates. The proportions of PMMA and ABS were optimized. ABS may be considered as a modifier, which obviously improved some characteristics of the microchip, such as the hydrophilicity and the electro-osmotic flow (EOF). The detection limit of Rhodamine 6G dye for the modified microchip on the home-made microchip analyzer showed a dramatic 100-fold improvement over that for the unmodified PMMA chip. A detection limit of the order of 10(-20) mole has been achieved for each injected phiX-174/HaeIII DNA fragment with the baseline separation between 271 and 281 bp, and fast separation of 11 DNA restriction fragments within 180 seconds. Analysis of a PCR product from the tobacco ACT gene was performed on the modified microchip as an application example.