29 resultados para Sampling schemes
Resumo:
National Natural Science Foundation of China; Dalian University of Technology
Resumo:
In the construction of a large area neutron detector (neutron wall) that is used to detect neutrons at GeV energies, the performances of all the sampling paddle modules prepared for the neutron wall are investigated with a specially designed test bench. Tested by cosmic rays, an average intrinsic time resolution of 222.5 ps is achieved at the center of the modules. The light attenuation length and the effective speed of the light in the module are also investigated.
Resumo:
The density and distribution of spatial samples heavily affect the precision and reliability of estimated population attributes. An optimization method based on Mean of Surface with Nonhomogeneity (MSN) theory has been developed into a computer package with the purpose of improving accuracy in the global estimation of some spatial properties, given a spatial sample distributed over a heterogeneous surface; and in return, for a given variance of estimation, the program can export both the optimal number of sample units needed and their appropriate distribution within a specified research area. (C) 2010 Elsevier Ltd. All rights reserved.
Evaluation and application of micro-sampling system for inductively coupled plasma mass spectrometry
Resumo:
Two Meinhard microconcentric nebulizers, model AR30-07-FM02 and AR 30-07-FM005, were employed as a self-installed micro-sampling system for inductively coupled plasma-mass spectrometry (ICP-MS). The FM02 nebulizer at 22 muL/min of solution uptake rate gave the relative standard deviations of 7.6%, 3.0%, 2.7%, 1.8% for determinations (n = 10) of 20 mug/L Be, Co, In and Bi, respectively, and the detection limits (3s) of 0.14, 0.10, 0.02 and 0.01 mug/L for Be, Co In and Bi, respectively. The mass intensity of In-115 obtained by this micro-sampling system was 60% of that by conventional pneumatic nebulizer system at 1.3 mL/min. The analytical results for La, Ce, Pr and Nd in 20 muL Wistar rat amniotic fluid obtained by the present micro-sampling system were precisely in good agreement with those obtained using conventional pneumatic nebulization system.
Resumo:
The dissertation addressed the problems of signals reconstruction and data restoration in seismic data processing, which takes the representation methods of signal as the main clue, and take the seismic information reconstruction (signals separation and trace interpolation) as the core. On the natural bases signal representation, I present the ICA fundamentals, algorithms and its original applications to nature earth quake signals separation and survey seismic signals separation. On determinative bases signal representation, the paper proposed seismic dada reconstruction least square inversion regularization methods, sparseness constraints, pre-conditioned conjugate gradient methods, and their applications to seismic de-convolution, Radon transformation, et. al. The core contents are about de-alias uneven seismic data reconstruction algorithm and its application to seismic interpolation. Although the dissertation discussed two cases of signal representation, they can be integrated into one frame, because they both deal with the signals or information restoration, the former reconstructing original signals from mixed signals, the later reconstructing whole data from sparse or irregular data. The goal of them is same to provide pre-processing methods and post-processing method for seismic pre-stack depth migration. ICA can separate the original signals from mixed signals by them, or abstract the basic structure from analyzed data. I surveyed the fundamental, algorithms and applications of ICA. Compared with KL transformation, I proposed the independent components transformation concept (ICT). On basis of the ne-entropy measurement of independence, I implemented the FastICA and improved it by covariance matrix. By analyzing the characteristics of the seismic signals, I introduced ICA into seismic signal processing firstly in Geophysical community, and implemented the noise separation from seismic signal. Synthetic and real data examples show the usability of ICA to seismic signal processing and initial effects are achieved. The application of ICA to separation quake conversion wave from multiple in sedimentary area is made, which demonstrates good effects, so more reasonable interpretation of underground un-continuity is got. The results show the perspective of application of ICA to Geophysical signal processing. By virtue of the relationship between ICA and Blind Deconvolution , I surveyed the seismic blind deconvolution, and discussed the perspective of applying ICA to seismic blind deconvolution with two possible solutions. The relationship of PC A, ICA and wavelet transform is claimed. It is proved that reconstruction of wavelet prototype functions is Lie group representation. By the way, over-sampled wavelet transform is proposed to enhance the seismic data resolution, which is validated by numerical examples. The key of pre-stack depth migration is the regularization of pre-stack seismic data. As a main procedure, seismic interpolation and missing data reconstruction are necessary. Firstly, I review the seismic imaging methods in order to argue the critical effect of regularization. By review of the seismic interpolation algorithms, I acclaim that de-alias uneven data reconstruction is still a challenge. The fundamental of seismic reconstruction is discussed firstly. Then sparseness constraint on least square inversion and preconditioned conjugate gradient solver are studied and implemented. Choosing constraint item with Cauchy distribution, I programmed PCG algorithm and implement sparse seismic deconvolution, high resolution Radon Transformation by PCG, which is prepared for seismic data reconstruction. About seismic interpolation, dealias even data interpolation and uneven data reconstruction are very good respectively, however they can not be combined each other. In this paper, a novel Fourier transform based method and a algorithm have been proposed, which could reconstruct both uneven and alias seismic data. I formulated band-limited data reconstruction as minimum norm least squares inversion problem where an adaptive DFT-weighted norm regularization term is used. The inverse problem is solved by pre-conditional conjugate gradient method, which makes the solutions stable and convergent quickly. Based on the assumption that seismic data are consisted of finite linear events, from sampling theorem, alias events can be attenuated via LS weight predicted linearly from low frequency. Three application issues are discussed on even gap trace interpolation, uneven gap filling, high frequency trace reconstruction from low frequency data trace constrained by few high frequency traces. Both synthetic and real data numerical examples show the proposed method is valid, efficient and applicable. The research is valuable to seismic data regularization and cross well seismic. To meet 3D shot profile depth migration request for data, schemes must be taken to make the data even and fitting the velocity dataset. The methods of this paper are used to interpolate and extrapolate the shot gathers instead of simply embedding zero traces. So, the aperture of migration is enlarged and the migration effect is improved. The results show the effectiveness and the practicability.