139 resultados para SURF feature extraction
Resumo:
近年来,藏文信息处理倍受国家重视,发展迅速,但是针对联机藏文手写识别的研究却处于起步阶段。半个世纪以来,关于英文、中文、日文等的联机手写识别的研究已经发展的相当成熟,大量应用于各种联机终端中,给大众带来了巨大的便利。根据联机藏文手写字符的特点,在大量的已有理论中选取适合的方案,对选中的成熟理论进行合理的改进,是一条快捷的发展联机藏文手写识别的路线。本文研究了联机藏文手写识别中的预处理和特征提取部分。预处理是保证特征提取设计方案有效性的前提,包括线性归一化、非线性归一化、等距离重采样和笔画平滑等操作。对这些操作,本文参考其他文种联机手写识别中成熟的方法,针对联机藏文手写字符的特点进行了筛选和改进。本文主要使用网格方向特征来对特征提取阶段进行设计,它是一种目前大量使用的手写体特征。网格方向特征提取方案主要包括方向分解、投影子分量图像、网格划分、确定权值分配器等操作。本文针对藏文手写字符的特点,在大量实验的基础上,确定了四方向拆分、均匀网格划分和使用Gaussian滤波器作为权值分配器的网格方向特征提取方案。在对藏文手写识别预处理和特征提取研究的基础上,本文提出了基于网格方向特征的联机藏文手写识别特征提取方案。
Resumo:
With the digital all-sky imager (ASI) emergence in aurora research, millions of images are captured annually. However, only a fraction of which can be actually used. To address the problem incurred by low efficient manual processing, an integrated image analysis and retrieval system is developed. For precisely representing aurora image, macroscopic and microscopic features are combined to describe aurora texture. To reduce the feature dimensionality of the huge dataset, a modified local binary pattern (LBP) called ALBP is proposed to depict the microscopic texture, and scale-invariant Gabor and orientation-invariant Gabor are employed to extract the macroscopic texture. A physical property of aurora is inducted as region features to bridge the gap between the low-level visual features and high-level semantic description. The experiments results demonstrate that the ALBP method achieves high classification rate and low computational complexity. The retrieval simulation results show that the developed retrieval system is efficient for huge dataset. (c) 2010 Elsevier Inc. All rights reserved.
Resumo:
鉴于多重分形理论在定量描述复杂系统非线性运行规律方面具有的独特优势,将多重分形理论引入到工况特征识别研究中来,确认了水泥回转窑窑电流信号的多重分形特性。在此基础上,研究了窑电流多重分形谱参数随工况变化的情况,发现多重分形谱参数的变化趋势与回转窑内工况状态的变化趋势之间具有较强的关联性,进而提出了基于多重分形谱参数进行水泥回转窑异常工况特征提取的新方法,为水泥生产过程中工况状态的在线监控和预报提供了有力支持。
Resumo:
特征提取是人脸识别中一个关键步骤。传统的Fisherface人脸识别方法中用样本的类均值和总体均值定义相应的散布矩阵,丢失了样本个体之间的结构信息,本文提出了一种基于原始样本个体结构信息的结构化Fisherface人脸识别方法,最后得到的特征数据中保留了原始样本更多的分布信息。在ORL人脸数据库的实验结果验证了该方法的有效性。
Resumo:
该文对统计不相关最优鉴别矢量集算法进行研究,在分析统计不相关最优鉴别矢量集算法的基础上提出了一种改进的方法。该方法在类内散布矩阵的特征空间中求解统计不相关最优鉴别矢量集。为了加快特征抽取速度,利用基于图像鉴别分析的维数压缩方法,对图像数据进行了压缩。在ORL和Yale人脸数据库的数值实验,验证本文所提出的方法的有效性。
Resumo:
本文对统计不相关最优鉴别矢量集的理论问题进行研究 ,提出了广义统计不相关最优鉴别准则 ,并给出了广义统计不相关最佳鉴别矢量集的一个理论结果 ,研究表明 ,广义统计不相关最佳鉴别矢量集的计算公式与基于Fisher最优鉴别准则的统计不相关最佳鉴别矢量集的计算公式完全一样 ,但是以前这一点没有被认识到 .本文的研究丰富了统计不相关最优鉴别分析的特征抽取理论 .
Resumo:
对统计不相关最佳鉴别矢量集的本质进行研究 ,在基于总体散布矩阵特征分解的基础上 ,构造了一种白化变换 ,使得变换后的样本空间中的总体散布矩阵为单位矩阵 ,这样使得传统的最佳鉴别矢量集算法得到的均是具有统计不相关的最佳鉴别矢量集 ,从而揭示了统计不相关最佳鉴别变换的本质———白化变换加普通的线性鉴别变换。该方法的最大优点在于所获得的最优鉴别矢量同时具有正交性和统计不相关性。该方法对代数特征抽取具有普遍适用性。用ORL人脸数据库的数值实验 ,验证了该方法的有效性
Resumo:
对最佳鉴别矢量的求解方法进行了研究,根据矩阵的分块理论和优化理论,在一定的条件下,从理论上得到类间散布矩阵和总体散布矩阵的一种简洁表示方法,提出了求解最佳鉴别矢量的一种新算法,该算法的优点是计算量明显减少。ORL人脸数据库的数值实验,验证了上述论断的正确性。实验结果表明,虽然识别率与分块维数之间存在非线性关系,但可以通过选择适当的分块维数来获得较高的识别率。类间散布矩阵和总体散布矩阵的一种简洁表示方法适合于一切使用Fisher鉴别准则的模式识别问题。
Resumo:
从特殊票据———火车票票面字符的特点出发 ,将笔划复杂性指数与四周面积编码结合起来作为粗分类的分类特征 采用C -均值聚类算法进行预分类 最后生成分类特征库———分类字典 .得到了预期的分类效果 ,正确分类率达到 95 % .
Resumo:
快速图像特征提取算法是图像处理和计算机视觉领域的重要研究课题。在复杂背景下基于视频的自动目标识别与跟踪中,目标特征的快速准确提取是实现高概率自动目标识别的关键技术,目标特征的快速提取能简化待识别目标的表示,实现快速准确地识别出感兴趣的目标。在机器人视觉中,快速图像特征提取也有广泛的应用,如视觉里程计技术、机器人自主视觉导航技术等。本文根据视频监控和机器人视觉的实际需求,对此课题开展了研究,主要的研究成果包括如下内容: 1)为消除视频图像的噪声对特征点提取的影响,提出了一种新的基于图像统计信息消除椒盐噪声算法。该算法能在去除噪声同时保持图像的细节特征(边缘和角点等),并且具有较低的计算复杂度。 2)提出了基于4叉树和色彩迁移理论的光照常恒算法。该算法可对同一场景不同光照下的两幅图像进行光照校正。将一幅图像的亮度特征传递给另一幅图像,使目标图像具有与参照图像相似的亮度统计信息。通过亮度处理之后,两幅图像具有相似的光照背景,有助于后续的特征点检测。 3)提出了基于LBP的角点快速提取算法。该方法与目前流行Harris和SUSAN角点提取算法相比,具有复杂度低、实时性好、灰度伸缩不变性和旋转不变性等优点。 4)从透镜成像模型原理出发,推导出精确的景深计算公式,并将其和传统的景深计算公式进行了深入的比较和分析,最后从计算机视觉角度阐述了本文的景深计算公式的优点。 5)在上述算法研究和试验基础上,研发了森林烟火自动识别软件系统。在该系统中,上述提出的算法得到成功的应用。该软件系统已投入实际使用,实现了24小时全天候森林烟火自动监控和预警,同时也验证了文中所提算法的有效性。论文的最后一章进行了总结,并对今后的研究工作进行了展望。
Resumo:
插件作业 (parts mating)是装配机器人的一项基本作业环节 .本文介绍了以双目立体视觉实现该作业的视觉导引方法 .该方法通过采用人机交互方式 ,借助于人的智慧 ,提高了图像特征提取和匹配的准确性和可靠性、可直观准确地给出插件作业的动作参数 ,克服了自动视觉计算复杂、鲁棒性差的缺点 ,适用于机器人遥操作作业 .实验表明 ,基于人机交互的机器人插件作业在立体视觉导引下是完全可行的
Resumo:
本文对视觉控制下的一个简单实验室装配系统作了介绍,讨论了系统组成、机器人控制、二维图象特征的提取、对物体自动识别、定位定向、系统标定、实现垒积木装配工作.本实验系统用的是我所研制的国内第一台示教再现机器人.
Resumo:
本文提出的系统主要为了在自动化传输带上进行零件的自动识别、定位、定向。曾用该系统对三十多种钟表零件进行反复验证,效果甚佳。
Resumo:
本文结合自适应小波变换滤波去噪方法与小波阈值去噪方法,提出了一种可用于变速器故障振动信号去噪的双层滤波去噪算法。该算法的滤波过程分为两层,第一层滤波采用自适应小波变换滤波算法;第二层滤波采用经典的小波阈值去噪算法对信号进行二次去噪。最后,将去噪后的故障信号采用小波包进行了分解,并提取了小波包频带能量作为故障特征向量。
Resumo:
独立分量分析是一种有效的人脸特征提取方法。考虑到人脸样本的对称性,本文采用对称独立分量分析的方法对人脸样本进行特征提取。为了提高独立分量分析法表征人脸特征空间的能力,本文采用遗传算法对特征空间进行选择优化,获得最优的人脸特征子集。仿真实验表明,本文提出方法的识别率明显的好于独立分量分析方法的识别率。