185 resultados para SM(TTA)(3)PHEN


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the detailed conversion process of the dominant electroluminescence (EL) mechanism in a device with Eu(TTA)(3)phen (TTA=thenoyltrifluoroacetone, phen=1,10-phenanthroline) doped CBP (4,4(')-N,N-'-dicarbazole-biphenyl) film as the emitting layer was investigated by analyzing the evolution of carrier distribution on dye and host molecules with increasing voltage. Firstly, it was confirmed that only electrons can be trapped in Eu(TTA)(3)phen doped CBP. As a result, holes and electrons would be situated on CBP and Eu(TTA)(3)phen molecules, respectively, and thus creates an unbalanced carrier distribution on both dye and host molecules. With the help of EL and photoluminescence spectra, the distribution of holes and electrons on both Eu(TTA)(3)phen and CBP molecules was demonstrated to change gradually with increasing voltage. Therefore, the dominant EL mechanism in this device changes gradually from carrier trapping at relatively low voltage to Forster energy transfer at relatively high voltage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have fabricated and measured a series of electroluminescent devices with the structure of ITO/TPD/Eu(TTA)(3)phen (x):CBP/BCP/ ALQ/LiF/Al, where x is the weight percentage of Eu(TTA)3phen (from 0% to 6%). At very low current density, carrier trapping is the dominant luminescent mechanism and the 4% doped device shows the highest electroluminescence (EL) efficiency among all these devices. With increasing current density, Forster energy transfer participates in EL process. At the current density of 10.0 and 80.0mA/ cm(2), 2% and 3% doped devices show the highest EL efficiency, respectively. From analysis of the EL spectra and the EL efficiency-current density characteristics, we found that the EL efficiency is manipulated by Forster energy transfer efficiency at high current density. So we suggest that the dominant luminescent mechanism changes gradually from carrier trapping to Forster energy transfer with increasing current density. Moreover, the conversion of dominant EL mechanism was suspected to be partly responsible for the EL efficiency roll-off because of the lower EL quantum efficiency of Forster energy transfer compared with carrier trapping.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several organic electroluminescent devices with different device structures were fabricated based on an organosamarium complex Sm(HFNH)(3)phen[HFNH=4, 4, 5, 5, 6, 6, 6-heptafluoro-l-(2-naphthvl)hexane-1, 3-dione; phen=1, 10-phenanthroline] as emitter. Their electroluminescent properties were investigated in detail. Although the devices with the optimal structure ITO/TPD (50nm)/ Sm(HFNH)(3)phen (xwt%):CBP (50nm)/BCP (20nm)/AIQ (30nm)/LiF (1 nm),/Al (200nm) show high brightness (more than 400cd/m(2)) and high current efficiency (about 1 cd/A), there are emissions from CBP, BCP and even from AIQ existing in the electroluminescence (EL) spectra besides emission from Sm(HFNH)(3)Phen. The reason to this was discussed. The device with the structure ITO/TPD (50 nm)/ Sm(HFNH)(3)phen (50 nm)/AIQ (30 nm)/LiF (1 nm)/Al (200 nm) exhibits the maximum brightness of 118 cd/m(2) and current efficiency of 0.029 cd/A, and shows emissions from AIQ and Sm(HFNH)(3)phen at high voltages. However, with the BCP hole-block layer added, the device [ITO/TPD (50 nm)/Sm(HFNH)(3)phen (50 nm)/BCP (20 nm)/AIQ (30 nm)/LiF (1 nm)/Al (200 nm)] exhibits pure Sm3+ emission in 2 the EL spectra even at high voltages, with the maximum current efficiency of 0.29cd/A and brightness of 82cd/m(2)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic-inorganic hybrids containing luminescent lanthanide complex Eu(tta)(3)Phen (tta = thenoyltrifluoroaceton, phen = 1,10-phenanthroline) and silver nanoparticles have been prepared via mixing rare earth complex and nanoparticles with the precursors of di-ureasil using a sol-gel process. The obtained hybrid materials with transparent and elastomeric features were characterized by transmission electron microscope, solid-state Si-29 magic-angle spinning NMR spectra, diffuse reflectance, UV-visible absorption and photoluminescence spectroscopies. The effect of the silver nanoparticles on the luminescence properties was investigated. The experimental results showed that the luminescence intensity of the Eu(tta)(3)phen complex could be enhanced by less than ca. 9.5 nM of silver nanoparticles with the average diameter of 4 nm, and reached its maximum at the concentration of ca. 3.6 nM. Further increasing the concentration of the silver nanoparticles (> 9.5 nM) made the luminescence quenched. The enchancement and quench mechnism was discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The triplet energy state of the HTH [HTH: 4,4,5,5,6,6,6-heptafluoro-1-(2-thienyl) hexane-1,3-dione] ligand was measured to be 20 400 cm(-1), which indicated that Sm(HTH)(3) phen (phen: 1,10-phenanthroline) is a good complex to produce strong PL intensity and high fluorescence yield. Electroluminescent (EL) devices using the Sm( HTH) 3 phen complex as the emissive center were fabricated by vapor deposition and spin-coating methods. The relative intensity of the EL spectra changed compared to the photoluminescence (PL) spectrum, which suggested that the luminescence mechanisms of PL and EL have differences. A luminance of 9 cd m(-2) and a higher brightness of 21 cd m(-2) were obtained from the devices ITO/TPD (40 nm)/ Sm( HTH)(3) phen (50 nm)/ PBD (30 nm)/ Al (200 nm) and ITO/PVK (40 nm)/ PVK : Sm( HTH)(3) phen (2.5 wt%, 50 nm)/ PBD (30 nm)/ Al (200 nm), respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microporous silica gel has been prepared by the sol-gel method utilizing the hydrolysis and polycondensation of tetraethylorthosilicate (TEOS). The gel has been doped with the luminescent ternary europium complex Eu(TTA)(3)(.)phen: where HTTA=1-(2-thenoyl)-3,3,3-trifluoracetone and phen=1,10-phenanthroline. By contrast to the weak f-f electron absorption bands of Eu3+, the complex organic ligand exhibits intense near ultraviolet absorption. Energy transfer from the ligand to Eu3+ enables the production of efficient, sharp visible luminescence from this material. Utilizing the polymerization of methyl methacrylate, the inorganic/polymer hybrid material containing Eu(TTA)(3)(.)phen has also been obtained. SEM micrographs show uniformly dispersed particles in the nanometre range. The characteristic luminescence spectral features of europium ions are present in the emission spectra of the hybrid material doped with Eu(TTA)(3)(.)phen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microporous silica gel has been prepared by the sol-gel method utilizing the hydrolysis and polycondensation of tetraethylorthosilicate (TEOS). The gel has been doped with the luminescent ternary europium complex Eu(TTA)(3). phen: where HTTA = 1-(2-thenoyl)-3,3,3-trifluoracetone and phen = 1,10-phenanthroline. By contrast to the weak f-f electron absorption bands of Eu3+, the complex organic ligand exhibits intense near ultraviolet absorption. Energy transfer from the ligand to Eu3+ enables the production of efficient, sharp visible luminescence from this material. Utilizing the polymerization of methyl methacrylate or ethyl methacrylate, the inorganic/polymer hybrid materials containing Eu(TTA)(3). phen have also been obtained. SEM micrographs show uniformly dispersed particles in the nanometre range. The characteristic luminescence spectral features of europium ions are present in the emission spectra of the hybrid material doped with Eu(TTA)3 phen. (C) 2000 Kluwer Academic Publishers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transparent organic-inorganic hybrid monoliths containing rare-earth complexes (Eu(TTA)(3)Phen, Tb(Sal)(3)) were prepared via the sol-gel technique. It could be observed by transmission electron microscopy that the fluorescent particles are distributed in the matrix at the microscopic level. The matrix is composed of organic-inorganic semiinterpenetrating networks, i.e., PHEMA-SiO2 system. The fluorescence emission spectra of samples are similar to those from corresponding powdered Eu(III) and Tb(III) complexes, and the half-widths of the strongest bands are less than 10 nm, which indicates that the monolith exhibits high fluorescence intensity and color purity. Furthermore, the fluorescence spectra exhibit no obvious change with decreasing nanoparticle size of the rare-earth complex. The fluorescence lifetimes of samples are longer than pure Eu(III), Tb(III) complexes, respectively. Samples irradiated with an UV lamp (365 nm) are still transparent but become bright red and green in color due to fluorescence of Eu(III) and Tb(III) complexes. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

稀土离子的敏化发光早在1942年就被Weissiman发现了,后来,人们对这一现象作了大量的研究工作,并且,开始用于稀土离子的测试。高灵敏度和好的选择性一直是分析工作者追求的真正目的。为此,很长时间以来,人们从化学体系上入手,不断地在配体种类;配体条件;溶剂作用;第二配体影响;胶束;表面活性剂等方面入手,来寻找可获得高的灵敏度和好的选择性的测试体系,并取得了一定的成绩,但还远远满足不了分析工作者的要求。近年来,随着仪器设备的不断改进,人们想到,能否通过新的仪器的出现来改善分析测试的灵敏度和选择性。时间分辨光谱法就是在这种条件下产生的,并且,初步的实验就得到了令人十分满意的结果。时间分辨光谱法顾名思义是以时间做为分辨量的一种方法,是一种多维萤光技术,它采用脉冲激光做为光源和门控检测系统相结合,因此,不但获得了高子常规法的灵敏度,而且还解决了光谱峰有干扰的发光组分的测定,提高了选择性。为了有效地应用时间分辨光谱法即获得更高的灵敏度和更好的选择性,时间分辨光支要求:①待测定的物质必须有较强的发光,这是提高灵敏度的前提:②待测定的物质的寿命必须合适(如测单组分时是通过延迟消除噪声,则被测组分的寿命至少要比噪音信号长;若是二组分的分辨光谱法测定,就要求二组分间寿命差要尽可能大),这样才可能效分辨;③适合彼此间有光谱干扰的多组分中单一组分的测定,这是时间分辨光谱法优于常远见二维光法的最为突出的一点。Eu-TTA_3和SmTTA_3是较合适时间分辨测定体系。Eu_TTA_3和S_m-TTA_3 二元络合物不但有较强的萤光,而且寿命差较大,EuTTA_39寿命400微秒)。SmTTA_3(寿命21微秒),并且Eu和Sm间有光谱干扰,因此在混合体系下,时间分辨光谱法测定Eu和Sm才充分显示了伏越性。为此,为了研究稀土元素的时间分辨光谱测定,本论文分三部分完成。第一部分:几种稀土离子萤光络合物体系的选择通过对Eu~(3+)、Tb~(3+)、Dy~(3+)络合体系最强发光的条件实验,期望找到一系列既有较强的发光,元素间又存在着光谱干扰。而常规法又难以测试的络合物体系。为此,在现有条件下,做了TTA、DBM、Phen、AAE、Sal五种配体Eu~(3+)、Sm~(3+)、Tb~(3+)、Py~(3+)四种稀土离子所有可能的络合物组成的发光条件试验,主要为配体浓度和PH值的影响。确定了不同络合物的最佳组成条件。并且考虑到苯的毒性和萃取的繁琐性。选用乙醇做为溶剂。最后得到TTA、DBM是Eu、Sm较好的络合剂,而且它们与Phen的三元络合物也具有强的发光。Sml:是Tb和Dy的较好络合剂,并且它们与Phen形成三元络合物也具有较强的萤光,AAE、Phen是选择性最差的络合剂,它们与Tb、Eu、Sm、Dy都能形成有一定发光强度的络合剂Eu和Sm以及Tb和Dy之间是无论配体息样变化都有光谱干扰的两对元素。第二部分;发光络合物的萤光寿命的测试:除了要求从化学体系入手,得到具有较强的发光络合物之外,时间分辨光谱法还要求;待分辩的物质间有较大的寿命差异。寿命τ是进行时间分辨光谱法的理论基础。为此,在本室和11室自己安装的仪器上做了已讨论的最佳条件下合成的络合物萤光寿命的测试,并给出了许多络合物的寿命数据。同时还讨论了配体种类,稀土离子浓度,对寿命大小的影响,得出不同的稀土离子络合物寿命差异很大,即使是相同的稀土离子,配体不同,寿命也是不同的,一般而言,Eu,Tb寿命较长,达几百微秒,Dy、Sm寿命较短,一般仅为几微秒或几十微秒,并总有寿命Tb > Eu > Sm > Dy。为了讨论稀土离子浓度对寿命的影响。选Eu. Sm-TTA和Tb. Dy-Sal-乙醇溶液为例,进行了浓度影响实验,得到浓度粹灭的同时,不仅萤光强度减弱,而且寿命缩短,最后总结出: Eu. Sm-TTA(Phen)二元(或三元)络合物和Tb. Dy-Sal(Phen)二元(或三元)络合物彼此间寿命差最大。第三部分:时间分辨光谱法研究在前二部分准备工作完成后,基本上就确定了可供时间分辩的最佳体系,即Eu. Sm-TTA二元络合物(或它与Phen形成的三元络合物)和Tb、Dy-Sal二元络合物(或与Phen形成的三元络合物)-乙醇体系。关于Eu.Sm-TTA体系的时间分辨光谱法测定,已有过研究并得到了十分满意的结果,因此,本论文选不曾有过报导的Tb、Dy-Sal 乙醇体系为时间分辨光谱法研究的对象。首先在本室和11室自建的时间分辨光谱仪上进行了仪器测量参数的选择,然后,对Tb、Dy-sal的时间分辨光谱法给以原理性的讨论,得到在延迟大于30微秒后,可消除Dy对Tb测定的干扰的结果,之后,又作了当延迟大于100微秒的条件下的时间分辩光谱法在Dy存在下测定Rb[Sal]_3的检测限的探索,并与MPF-4型萤光分光光度计的测试结果做了比较,得到了可高于常规法三个数量级的灵敏度的初步结果。本论文建立了寿命测量和激光时间分辨的实验装置,并且完成了原理性实验,在选择体系测定寿命和利用时间分辨排除稀土离子干扰方面得到了较好的初步结果,积累了大量数据完成了本论文目的要求。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A beta-diketone ligand 4,4,5,5,5-pentafluoro-1-(2-naphthyl)-1,3-butanedione (Hpfnp), which contains a pentafluoroalkyl chain, was synthesized as the main sensitizer for synthesizing new near-infrared (NIR) luminescent Ln(pfnp)(3)phen (phen = 1,10-phenanthroline) (Ln = Er, Nd, Yb, Sm) complexes. At the same time, a series of lanthanide complexes covalently bonded to xerogels by the ligand 5-(N,N-bis-3-(triethoxysilyl)propyl)ureyl-1,10-phenanthroline (phen-Si) were synthesized in situ via a sol-gel process. [The obtained materials are denoted as xerogel-bonded Ln complexes (Ln = Er, Nd, Yb, Sm).] The single crystal structures of the Ln(pfnp) 3phen complexes were determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New near-infrared-luminescent mesoporous materials were prepared by linking ternary lanthanide (Er3+, Nd3+, Yb3+, Sm3+, Pr3+) complexes to the ordered mesoporous MCM-41 through a functionalized 1,10-phenanthroline (phen) group 5-(N,N-bis-3-(triethoxysilyl)propyl)ureyl-1,10-phenanthroline. The resulting materials (denoted as Ln(hfth)(3)phen-M41 and Pr(tfnb)(3)phen-M41; Ln=Er, Yb, Nd, Sm; hfth = 4,4,5,5,6,6,6-heptafluoro-1-(2-thienyl)hexane-1,3-dionate; tfnb = 4,4,4-trifluoro-1-(2-naphthyl)- 1, 3-butanedionate) were characterized by powder X-ray diffraction, N-2 adsorption/desorption, and elemental analysis. Luminescence spectra of these lanthanide-complex functionalized materials were recorded, and the luminescence decay times were measured. Upon excitation at the absorption of the organic ligands, all these materials show the characteristic NIR luminescence of the corresponding lanthanide (Er3+, Nd3+, Yb3+, Sm3+, Pr3+) ions by sensitization from the organic ligands moiety. The good luminescent performances enable these NIR-luminescent mesoporous materials to have possible applications in optical amplification (operating at 1300 or 1500 nm), laser systems, or medical diagnostics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The photophysical properties of the complex Sm(PM)(3)(TP)(2) [PM = 1-phenyl-3-methyl-4-isobutyryl-5-pyrazolone, TP = triphenyl phosphine oxide] are determined in crystal state, and energy transfer process is modeled for ligands to center Sm(III) ion. The characteristic luminescence of Sm(III) is sensitized by PM and TP, and most of transitions from excited state (4)G(5/2) of Sm3+ are detected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ligands 4,4,4-trifluoro-1-phenyl-1.3-butanedione (Hbfa) and 1,10-phenanthroline (phen) were used to prepare ternary lanthanide (Ln) complexes [Dy(bfa)(3)phen and Tm(bfa)(3)phen]. Crystal data: Dy(bfa)(3)phen C(42)H(26)FqN(2)O(6)Dy, triclinic, P (1) over bar, a= 9.9450(6) angstrom, b = 14.0944(9) angstrom, c = 14.6043(9) angstrom, alpha = 82.104(1)degrees, beta = 87.006(1)degrees, gamma = 76.490(1)degrees, V = 1971.1(2)angstrom(3), Z = 2; Tm(bfa)(3)phen C42H26F9N2O6Tm, triclinic, P (1) over bar, a = 9.898(5)angstrom, b = 13.918(5)angstrom, c = 14.753(5)angstrom, a = 83.517(5)degrees, alpha = 86.899(5)degrees, gamma = 76.818(5)degrees, V = 1965.3(14)angstrom(3), Z = 2. The coordination number of the central Ln(3+) (Ln = Dy, Tm) ion is eight, with six oxygen atoms from three Hbfa ligands and two nitrogen atoms from the phen ligand.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tertiary lanthanide complexes [Ln(hfth)(3)phen] (Ln=Er, Nd, Yb, Sm) and [Pr(tfnb)(3)phen] have been Successfully covalently attached in the ordered SBA-15 mesoporous materials via a functionalized 1,10-phenanthroline group 5-(N,N-bis-3-(triethoxysilyl)propyl)ureyl-1,10-phenanthroline (Phen-Si). The derivative materials [denoted as Ln(hfth)(3)phen-S15 and Pr(tfnb)(3)phen-S15; Ln=Er, Yb, Nd, Sm; hfth=4,4,5,5,6,6,6-heptafluoro-1-(2-thienyl)hexane-1,3-dionate; tfnb=4,4,4-trifluoro-1-(2-naphthyl)-1,3-butanedionate] were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and N-2 adsorption/desorption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a quantum chemistry method was used to investigate the effect of different sizes of substituted phenanthrolines on absorption, energy transfer, and the electroluminescent performance of a series of Eu(TTA)(3)L (L = [1,10] phenanthroline (Phen), Pyrazino[2,3-f][1,10]phenanthroline (PyPhen), 2-methylprrazino[2,3-f][1,10] phenanthroline(MPP), dipyrido[3,2-a:2',3'-c]phenazine(DPPz), 11-methyldipyrido[3,2-a:2',3'c]phenazine(MDPz), 11.12-dimethyldipyrido[3,2-a:2',3'-c]phenazine(DDPz), and benzo[i]dipyrido[3,2-a:2',3'-c]phenazine (BDPz)) complexes. Absorption spectra calculations show that different sizes of secondary ligands have different effects on transition characters, intensities, and absorption peak positions.