18 resultados para Rich Description Method


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An aptamer-based label-free approach to hemin recognition and DNA assay using capillary electrophoresis with chemiluminescence detection is introduced here. Two guanine-rich DNA aptamers were used as the recognition element and target DNA, respectively. In the presence of potassium ions, the two aptamers folded into the G-quartet structures, binding hemin with high specificity and affinity. Based on the G-quartet-hemin interactions, the ligand molecule was specifically recognized with a K (d)approximate to 73 nM, and the target DNA could be detected at 0.1 mu M. In phosphate buffer of pH 11.0, hemin catalyzed the H2O2-mediated oxidation of luminol to generate strong chemiluminescence signal; thus the target molecule itself served as an indicator for the molecule-aptamer interaction, which made the labeling and/or modification of aptamers or target molecules unnecessary. This label-free method for molecular recognition and DNA detection is therefore simple, easy, and effective.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a semiempirical method for the evaluation of bond covalency in complex crystals. This method is the extension of the dielectric description theory delivered by Phillips, Van Vechten, Levine, and Tanaka (PVLT) which is mainly suitable for binary crystals. Our method offers the advantage of applicability to a broad class of complex materials. The simplicity of the approach allows a broader class of researchers to access the method easily and to calculate not only the bond covalency but also other useful. properties such as bulk modulus. For a series study, a useful trend can be illustrated and often the prediction of the properties of the-missing one(s) among the series can be possible. Finally, examples are given to show how the method is applied and the procedure is transferable to other complex crystals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rare earth elements (RFEs) and major elements of 25 cobalt-rich crusts obtained from different depths of Mid-Pacific M seamount were analyzed using inductively coupled plasma-atomic emission spectrometer and gravimetric method. The results showed that they were hydrogenous crusts with average Sigma REE content of 2084.69 mu g/g and the light REE (LREE)/heavy REE (HREE) ratio of 4.84. The shale-normalized PEE patterns showed positive Ce anomalies. The total content of strictly trivalent REEs increased with water depth. The Ce content and LREE/HREE ratios in Fe-Mn crusts above 2000 in were lower than those below 2000 m. The change in RE E with water depth could be explained by two processes: adsorptive scavenging by setting matters and behaviors of REE in seawater. However, the Ce abundance took no obvious correlation with water depth reflects the constant Ce flux. The Cc in crusts existed mainly as Ce(IV), implying that the oxidative-enriching process was controlled by kinetic factors.