88 resultados para Reducing sugar (Determination)
Resumo:
The present paper aims to develop a robust spherical indentation-based method to extract material plastic properties. For this purpose, a new consideration of-piling-up effect is incorporated into the expanding cavity model; an extensive numerical study on the similarity Solution has also been performed. As a consequence, two semi-theoretical relations between the indentation response and material plastic properties are derived, with which plastic properties of materials can be identified from a single instrumented spherical indentation curve, the advantage being that this approach no longer needs estimations of contact radius with given elastic modulus. Moreover, the inconvenience in using multiple indenters with different tip angles can be avoided. Comprehensive sensitivity analyses show that the present algorithm is reliable. Also, by experimental verification performed oil three typical materials, good agreement of the material properties between those obtained from the reverse algorithm and experimental data is obtained.
Resumo:
Peel test measurements and inverse analysis to determine the interfacial mechanical parameters for the metal film/ceramic system are performed, considering that there exist an epoxy interface layer between film and ceramic. In the present investigation, Al films with a series of thicknesses between 20 and 250 mu m and three peel angles of 90, 135 and 180 degrees are considered. A finite element model with the cohesive zone elements is used to simulate the peel test process. The finite element results are taken as the training data of a neural network in the inverse analysis. The interfacial cohesive energy and the separation strength can be determined based on the inverse analysis and peel experimental result. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The present paper aims to develop a robust spherical indentation-based method to extract material plastic properties. For this purpose, a new consideration of-piling-up effect is incorporated into the expanding cavity model; an extensive numerical study on the similarity Solution has also been performed. As a consequence, two semi-theoretical relations between the indentation response and material plastic properties are derived, with which plastic properties of materials can be identified from a single instrumented spherical indentation curve, the advantage being that this approach no longer needs estimations of contact radius with given elastic modulus. Moreover, the inconvenience in using multiple indenters with different tip angles can be avoided. Comprehensive sensitivity analyses show that the present algorithm is reliable. Also, by experimental verification performed oil three typical materials, good agreement of the material properties between those obtained from the reverse algorithm and experimental data is obtained.
Resumo:
One of existing strategies to engineer active antibody is to link VH and VL domains via a linker peptide. How the composition, length, and conformation of the linker affect antibody activity, however, remains poorly understood. In this study, a dual approach that coordinates molecule modeling, biological measurements, and affinity evaluation was developed to quantify the binding activity of a novel stable miniaturized anti-CD20 antibody or singlechain fragment variable (scFv) with a linker peptide. Upon computer-guided homology modeling, distance geometry analysis, and molecular superimposition and optimization, three new linker peptides PT1, PT2, and PT3 with respective 7, 10, and 15 residues were proposed and three engineered antibodies were then constructed by linking the cloned VH and VL domains and fusing to a derivative of human IgG1. The binding stability and activity of scFv-Fc chimera to CD20 antigen was quantified using a micropipette adhesion frequency assay and a Scatchard analysis. Our data indicated that the binding affinity was similar for the chimera with PT2 or PT3 and ~24-fold higher than that for the chimera with PT1, supporting theoretical predictions in molecular modeling. These results further the understanding in the impact of linker peptide on antibody structure and activity.
Resumo:
A Fourier analysis method is used to accurately determine not only the absolute phase but also the temporal-pulse phase of an isolated few-cycle (chirped) laser pulse. This method is independent of the pulse shape and can fully characterize the light wave even though only a few samples per optical cycle are available. It paves the way for investigating the absolute phase-dependent extreme nonlinear optics, and the evolutions of the absolute phase and the temporal-pulse phase of few-cycle laser pulses.
Resumo:
Gamma-ray irradiation-induced color centers in Al2O3 crystals grown by temperature gradient techniques (TGT) under a strongly reducing atmosphere were studied. The transition F+ -> F takes place during the irradiation process. Glow discharge mass spectroscopy (GDMS) and annealing treatments show that Fe3+ impurity ions are present in the crystals. A composite (F+-Fe3+) defect was presented to explain the origin of the 255 nm band absorption in the TGT-Al2O3 crystals. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
A 2-D SW-banyan network is introduced by properly folding the 1-D SW-banyan network, and its corresponding optical setup is proposed by means of polarizing beamsplitters and 2-D phase spatial light modulators. Then, based on the characteristics and the proposed optical setup, the control for the routing path between any source-destination pair is given, and the method to determine whether a given permutation is permissible or not is discussed. Because the proposed optical setup consists of only optical polarization elements, it is compact in structure, its corresponding energy loss and crosstalk are low, and its corresponding available number of channels is high. (C) 1996 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Thin films of four nickel(II) and copper(II) hydrazone complexes, which will hopefully be used as recording layers for the next-generation of high-density recordable disks, were prepared by using the spin-coating method. Absorption spectra of the thin films on K9 optical glass substrates in the 300-700 nm wavelength region were measured. Optical constants (complex refractive indices N) and thickness d of the thin films prepared on single-crystal silicon substrates in the 275-675 nm wavelength region were investigated on a rotating analyzer-polarizer scanning ellipsometer by fitting the measured ellipsometric angles (Psi(lambda) and Delta(lambda)) with a 3-layer model (Si/dye film/air). The dielectric functions epsilon and absorption coefficients alpha as a function of the wavelength were then calculated. Additionally, a design to achieve high reflectivity and optimum dye film thickness with an appropriate reflective layer was performed with the Film Wizard software using a multilayered model (PC substrate/reflective layer/dye film/air) at 405 nm wavelength.
Resumo:
A V:YAG single crystal was grown by the temperature gradient technique (TGT) with graphite-heating elements. The as-grown crystal has different colorations of light green and yellow brown in different parts. Distribution of vanadium in three samples with different colorations was determined by inductively coupled plasma-mass spectrometry. From the absorption spectrum of the yellow-brown part with peaks at 370, 820 and 1320nm, we can deduce that the reducing atmosphere of carbon diffused from the heating elements can increase the concentration of tetrahedral V3+ ions and induce F color centers. All three samples exhibited light-green color after annealing in vacuum or H-2 atmospheres. In the vacuum annealing process, the V3+ ions in tetrahedral positions were enhanced through two methods: one method is the exchanging of octahedral V3+ and tetrahedral Al3+ ions in neighboring sites under thermal excitation, the other is that F color centers were thoroughly eliminated and the escaped free electrons could be captured by V ions with higher valance states to further improve the concentration of tetrahedral V3+ ions. Besides the two mechanisms, the H-2 annealing process greatly improved the V-tetra(3+) ions through the reduction effect of H-2. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Variations of peak position of the rocking curve in the Bragg case are measured from a Ge thin crystal near the K-absorption edge. The variations are caused by a phase change of the real part of the atomic scattering factor. Based on the measurement, the values of the real part are determined with an accuracy of better than 1%. The values are the most reliable ones among those reported values so far as they are directly determined from the normal atomic scattering factors.
Isolation of egg cells and zygotes of Torenia fournieri L. and determination of their surface charge