121 resultados para Reagent Kits
Resumo:
A simple and sensitive method for evaluating the chemical compositions of protein amino acids, including cystine (Cys)(2) and tryptophane (Try) has been developed, based on the use of a sensitive labeling reagent 2-(11H-benzo[alpha]-carbazol-11-yl) ethyl chloroformate (BCEC-Cl) along with fluorescence detection. The chromophore of the 1,2-benzo-3,4-dihydrocarbazole-ethyl chloroformate (BCEOC-Cl) molecule was replaced with the 2-(11H-benzo[alpha]-carbazol-11-yl) ethyl functional group, yielding the sensitive fluorescence molecule BCEC-Cl. The new reagent BCEC-Cl could then be substituted for labeling reagents commonly used in amino acid derivatization. The BCEC-amino acid derivatives exhibited very high detection sensitivities, particularly in the cases of (Cys)(2) and Try, which cannot be determined using traditional labeling reagents such as 9-fluorenyl methylchloroformate (FMOC-Cl) and ortho-phthaldialdehyde (OPA). The fluorescence detection intensities for the BCEC derivatives were compared to those obtained when using FMOC-Cl and BCEOC-Cl as labeling reagents. The ratios I (BCEC)/I (BCEOC) = 1.17-3.57, I (BCEC)/I (FMOC) = 1.13-8.21, and UVBCEC/UVBCEOC = 1.67-4.90 (where I is the fluorescence intensity and UV is the ultraviolet absorbance). Derivative separation was optimized on a Hypersil BDS C-18 column. The detection limits calculated from 1.0 pmol injections, at a signal-to-noise ratio of 3, ranged from 7.2 fmol for Try to 8.4 fmol for (Cys)(2). Excellent linear responses were observed, with coefficients of > 0.9994. When coupled with high-performance liquid chromatography, the method established here allowed the development of a highly sensitive and specific method for the quantitative analysis of trace levels of amino acids including (Cys)(2) and Try from bee-collected pollen (bee pollen) samples.
Resumo:
A pre-column derivatization method for the sensitive determination of amino acids and peptides using the tagging reagent 1,2-benzo-3,4dihydrocarbazole-9-ethyl chloroformate (BCEOC) followed by high-performance liquid chromatography with fluorescence detection has been developed. Identification of derivatives was carried out by liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS/MS). The chromophore of 2-(9-carbazole)-ethyl chloroformate (CEOC) reagent was replaced by 1,2-benzo-3,4-dihydrocarbazole functional group, which resulted in a sensitive fluorescence derivatizing reagent BCEOC. BCEOC can easily and quickly label peptides and amino acids. Derivatives are stable enough to be efficiently analyzed by high-performance liquid chromatography. The derivatives showed an intense protonated molecular ion corresponding m/z (M + H)(+) under electrospray ionization (ESI) positive-ion mode with an exception being Tyr detected at negative mode. The collision-induced dissociation of protonated molecular ion formed a product at m/z 246.2 corresponding to the cleavage of C-O bond of BCEOC molecule. Studies on derivatization demonstrate excellent derivative yields over the pH 9.0-10.0. Maximal yields close to 100% are observed with a 3-4-fold molar reagent excess. Derivatives exhibit strong fluorescence and extracted detzvatization solution with n-hexane/ethyl acetate (10:1, v/v) allows for the direct injection with no significant interference from the major fluorescent reagent degradation by-products, such as 1,2-benzo-3,4-dihydrocarbazole-9-ethanol (BDC-OH) (a major by-product), mono- 1,2-benzo-3,4-dihydrocarbazole-9-ethyl carbonate (BCEOC-OH) and bis-(1,2-benzo-3,4-dihydrocarbazole-9-ethyl) carbonate (BCEOC)(2). In addition, the detection responses for BCEOC derivatives are compared to those obtained with previously synthesized 2-(9-carbazole)-ethyl chloroformate (CEOC) in our laboratory. The ratios AC(BCEOC)/AC(CEOC) = 2.05-6.51 for fluorescence responses are observed (here, AC is relative fluorescence response). Separation of the derivatized peptides and amino acids had been optimized on Hypersil BDS C-18 column. Detection limits were calculated from 1.0 pmol injection at a signal-to-noise ratio of 3, and were 6.3 (Lys)-177.6 (His) fmol. The mean interday accuracy ranged from 92 to 106% for fluorescence detection with mean %CV < 7.5. The mean interday precision for all standards was < 10% of the expected concentration. Excellent linear responses were observed with coefficients of > 0.9999. Good compositional data could be obtained from the analysis of derivatized protein hydrolysates containing as little as 50.5 ng of sample. Therefore, the facile BCEOC derivatization coupled with mass spectrometry allowed the development of a highly sensitive and specific method for the quantitative analysis of trace levels of amino acids and peptides from biological and natural environmental samples. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A simple and sensitive method for the determination of short and long-chain fatty acids using high-performance liquid chromatography with fluorimetric detection has been developed. The fatty acids were derivatized to their corresponding esters with 9-(2-hydroxyethyl)-carbazole (HEC) in acetonitrile at 60 degreesC with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride as a coupling agent in the presence of 4-dimethylaminopyridine (DMAP). A mixture of esters of C-1-C-20 fatty acids was completely separated within 38 min in conjunction with a gradient elution on a reversed-phase C-18 column. The maximum fluorescence emission for the derivatized fatty acids is at 365 nm (lambda (ex) 335 nm). Studies on derivatization conditions indicate that fatty acids react proceeded rapidly and smoothly with HEC in the presence of EDC and DMAP in acetonitrile to give the corresponding sensitively fluorescent derivatives. The application of this method to the analysis of long chain fatty acids in plasma is also investigated. The LC separation shows good selectivity and reproducibility for fatty acids derivatives. The R.S.D. (n = 6) for each fatty acid derivative are <4%. The detection limits are at 45-68 fmol levels for C-14-C-20 fatty acids and even lower levels for
Resumo:
制备了不同含水量的掺铒磷酸盐玻璃,研究了各种工艺参数对反应气氛法除水效果的影响。结果表明由鼓泡气体带入的除水剂是玻璃除水的主要动力;在通气最初阶段的除水速率最快,并且提高除水温度、增大通气流量均有助于提高除水效率;结合实验从反应热力学角度讨论了除水机理,并指出在玻璃熔体中除水反应受熔体“笼效应”影响,反应速率大小取决于OH与CCl4形成偶遇对概率的大小。
Resumo:
The broadband luminescence covering 1.2-1.6 mu m was observed from bismuth and aluminum co-doped germanium oxide glasses pumped by 808 nm laser at room temperature. The spectroscopic properties of GeO2:Bi,Al glasses strongly depend on the glass compositions and the pumping sources. To a certain extent, the Al3+ ions play as dispersing reagent for the infrared-emission centers in the GeO2:Bi,Al glasses. The broad infrared luminescence with a full width at half maximum larger than 200 nm and a lifetime longer than 200 mu s possesses these glasses with the potential applications in broadly tunable laser sources and ultra-broadband fiber amplifiers in optical communication field. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Background: The Galliformes is a well-known and widely distributed Order in Aves. The phylogenetic relationships of galliform birds, especially the turkeys, grouse, chickens, quails, and pheasants, have been studied intensively, likely because of their close association with humans. Despite extensive studies, convergent morphological evolution and rapid radiation have resulted in conflicting hypotheses of phylogenetic relationships. Many internal nodes have remained ambiguous. Results: We analyzed the complete mitochondrial (mt) genomes from 34 galliform species, including 14 new mt genomes and 20 published mt genomes, and obtained a single, robust tree. Most of the internal branches were relatively short and the terminal branches long suggesting an ancient, rapid radiation. The Megapodiidae formed the sister group to all other galliforms, followed in sequence by the Cracidae, Odontophoridae and Numididae. The remaining clade included the Phasianidae, Tetraonidae and Meleagrididae. The genus Arborophila was the sister group of the remaining taxa followed by Polyplectron. This was followed by two major clades: ((((Gallus, Bambusicola) Francolinus) (Coturnix, Alectoris)) Pavo) and (((((((Chrysolophus, Phasianus) Lophura) Syrmaticus) Perdix) Pucrasia) (Meleagris, Bonasa)) ((Lophophorus, Tetraophasis) Tragopan))). Conclusions: The traditional hypothesis of monophyletic lineages of pheasants, partridges, peafowls and tragopans was not supported in this study. Mitogenomic analyses recovered robust phylogenetic relationships and suggested that the Galliformes formed a model group for the study of morphological and behavioral evolution.
Resumo:
Somatic cell nuclear transfer (SCNT) has been successfully used in many species to produce live cloned offspring, albeit with low efficiency. The low frequency of successful development has usually been ascribed to incomplete or inappropriate reprogramming of the transferred nuclear genome. Elucidating the genetic differences between normal fertilized and cloned embryos is key to understand the low efficiency of SCNT. Here, we show that expression of HSPC117, which encodes a hypothetical protein of unknown function, was absent or very low in cloned mouse blastocysts. To investigate the role of HSPC117 in embryo development, we knocked-down this gene in normal fertilized embryos using RNA interference. We assessed the post-implantation survival of HSPC117 knock-down embryos at 3 stages: E9 (prior to placenta formation); E12 (after the placenta was fully functional) and E19 (post-natal). Our results show that, although siRNA-treated in vivo fertilized/produced (IVP) embryos could develop to the blastocyst stage and implanted without any difference from control embryos, the knock-down embryos showed substantial fetal death, accompanied by placental blood clotting, at E12. Furthermore, comparison of HSPC117 expression in placentas of nuclear transfer (NT), intracytoplasmic sperm injection (ICSI) and IVP embryos confirmed that HSPC117 deficiency correlates well with failures in embryo development: all NT embryos with a fetus, as well as IVP and ICSI embryos, had normal placental HSPC117 expression while those NT embryos showing reduced or no expression of HSPC117 failed to form a fetus. In conclusion, we show that HSPC117 is an important gene for post-implantation development of embryos, and that HSPC117 deficiency leads to fetal abnormalities after implantation, especially following placental formation. We suggest that defects in HSPC117 expression may be an important contributing factor to loss of cloned NT embryos in vivo. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Enfuvirtide (ENF) is currently the only FDA approved HIV fusion inhibitor in clinical use. Searching for more drugs in this category with higher efficacy and lower toxicity seems to be a logical next step. In line with this objective, a synthetic peptide
Resumo:
A total of 36 compounds (1-36) were obtained from the stem bark of Poncirus trifoliata including three new prenylated flavonoids, (-)-5,4'-dihydroxy-7,8-[(3 '',4 ''-cis-dihydroxy-3 '',4 ''-dihydro)-2 '',2 ''-dimethylpyrano]-flavone (1), (-)-5,4'-dihydroxy-7,8-[(3 ''-hydroxy-4 ''-one)-2 '',2 ''-dimethylpyrano]-flavone (2), and (-)-5,4'-dihydroxy-7,8-[(cis-3 ''-hydroxy-4 ''-ethoxy-3 '',4 ''-dihydro)-2 '',2 ''-dimethylpyrano]-flavone (3). The new structures were elucidated by means of spectroscopic methods. Compounds 1-20 were evaluated for their anti-human immunodeficiency virus-1 (HIV-1) activity, in which 2 showed significant anti-HIV-1 activity with high therapeutic index (T1) of 143.65.
Resumo:
A new nortriterpenoid, 20-hydroxymicrandilactone D (1) and a novel lignan glycoside, lancilignanside A (2) were isolated from leaves and stems of Schisandra lancifolia, together with three known nortriterpenoids (3-5) and nine known phenolics (6-14). The structures of new compounds 1 and 2 were determined by detailed analysis of their 1D and 2D NMR spectra, and chemical evidences. In addition, compounds 1-2, 6-7, and 9-11 showed anti-human immunodeficiency virus (HIV)-1 activities with 50% effective concentration (EC50) in the range of 3.0-99.0 mu g/ml. Compound 12 was not bioactive in this assay with EC50 more than 200 mu g/ml.