143 resultados para Radius of Convexity
Resumo:
By means of the Huygens-Fresnel diffraction integral, the field representation of a laser beam modulated by a hard-edged aperture is derived. The near-field and far-field transverse intensity distributions of the beams with different bandwidths are analyzed by using the representation. The numerical calculation results indicate that the amplitudes and numbers of the intensity spikes decrease with increasing bandwidth, and beam smoothing is achieved when the bandwidth takes a certain value in the near field. In the far field, the radius of the transverse intensity distribution decreases as the bandwidth increases, and the physical explanation of this fact is also given. (c) 2005 Optical Society of America.
Resumo:
Starting from the Huygens-Fresnel diffraction integral and the Fourier transform, the propagation expression of a chirped pulse passing through a hard-edged aperture is derived. Using the obtained expression, the intensity distributions of the pulse with different chirp in the near and far fields are analyzed in detail. Due to the modulation of the aperture, many intensity peaks emerge in the intensity distributions of the chirped pulse in the near field. However, the amplitudes of the intensity peaks decrease on increasing the chirp, which results in the smoothing effect in the intensity distributions. The beam smoothing brought by increasing the chirp is explained physically. Also, it is found that the radius of the intensity distribution of the chirped pulse decreases when the chirp increases in the far field. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
Based on the Coulomb friction model, the frictional motion model of workpiece relating to the polishing pad was presented in annular polishing. By the dynamic analysis software, the model was simulated and analysed. The conclusions from the results were that the workpiece did not rotate steadily. When the angular velocity of ring and the direction were the same as that of the polishing pad, the angular velocity of workpiece hoicked at the beginning and at the later stage were the same as that of the polishing pad before contacting with the ring. The angular velocity of workpiece vibrated at the moment of contacting with the ring. After that the angular velocity of workpiece increased gradually and fluctuated at a given value, while the angular velocity of ring decreased gradually and also fluctuated at a given value. Since the contact between the workpiece and the ring was linear, their linear velocities and directions should be the same. But the angular velocity of workpiece was larger than that of the polishing pad on the condition that the radius of the workpiece was less than that of the ring. This did not agree with the pure translation principle and the workpiece surface could not be flat, either. Consequently, it needed to be controlled with the angular velocity of ring and the radii of the ring and the workpiece, besides friction to make the angular velocity of workpiece equal to that of the polishing pad for obtaining fine surface flatness of the workpiece. Copyright © 2007 Inderscience Enterprises Ltd.}
Resumo:
The effect of an apodizer with two parallel taper refractive surfaces is theoretically investigated for high-density optical storage. The apodizer may modulate an incident Gaussian beam into an annular beam. Simulation shows that with the increasing inner radius of the modulated beam, the focal spot shrinks obviously. The depolarization effect gets strong simultaneously, which induces the circular symmetry loss of the focal spot. In this process, pattern density of the orthogonal and longitudinal diffractive fields increases remarkably.
Resumo:
Based on scalar diffraction theory, we investigated far-field intensity distribution (FFID) of beam generated by Gaussian mirror resonator. We found usable analytical expressions of diffracted field with respect to variation of diffraction parameters. Particular attention was paid to the parameters such as mirror spot size and radius of the Gaussian mirror, which determine the FFID. All analyses were limited to TEM00 fundamental mode. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Mode radiation loss for microdisk resonators with pedestals is investigated by three-dimensional (3D) finite-difference time-domain (FDTD) technique. For the microdisk with a radius of 1 mu m, a thickness of 0.2 mu m, and a refractive index of 3.4, on a pedestal with a refractive index of 3.17, the mode quality (Q) factor of the whispering-gallery mode (WGM) quasi-TE7,1 first increases with the increase of the radius of the pedestal, and then quickly decreases as the radius is larger than 0.75 mu m. The mode radiation loss is mainly the vertical radiation loss induced by the mode coupling between the WGM and vertical radiation mode in the pedestal, instead of the scattering loss around the perimeter of the round pedestal. The WG M can keep the high Q factor when the mode coupling is forbidden.
Resumo:
The enhancement of quality factor for TE whispering-gallery modes is analyzed for three-dimensional microcylinder resonators based on the destructive interference between vertical leakage modes. In the microcylinder resonator, the TE whispering-gallery modes can couple with vertical propagation modes, which results in vertical radiation loss and low quality factors. However, the vertical loss can be canceled by choosing appropriate thickness of the upper cladding layer or radius of the microcylinder. A mode quality factor increase by three orders of magnitude is predicted by finite-difference time-domain simulation. Furthermore, the condition of vertical leakage cancellation is analyzed.
Resumo:
Coupled microcircular resonators tangentially coupled to a bus waveguide, which is between the resonators, are numerically investigated by the finite-difference time-domain technique. For symmetrically coupled microcircular resonators with refractive index of 3.2, radius of 2 mu m, and width of the bus waveguide of 0.4 mu m, a mode Q factor of the order of 105 is obtained for a mode at the frequency of 243 THz. An output coupling efficiency of as high as 0.99 is calculated for a mode with a Q factor ranging from 10(3) to 10(4). The mode Q factor is 2 orders larger than that of the modes confined in a single circular resonator tangentially coupled to the same bus waveguide. Furthermore, the high Q traveling modes in the coupled microcircular resonators are suitable for optical single processing.
Resumo:
A high-performance microring resonator in a silicon-on-insulator rib waveguide is realized by using the electron beam lithography followed by inductively coupled plasma etching. The design and the experimental realization of this device are presented in detail. In addition to improving relevant processes to minimize propagation loss, the coupling efficiency between the ring and the bus is carefully chosen to approach a critical coupling for high performance operating. We have measured a quality factor of 21,200 and an extinction ratio of 12.5dB at a resonant wavelength of 1549.32nm. Meanwhile, a low propagation loss of 0.89dB/mm in a curved waveguide with a bending radius of 40 mu m is demonstrated as well.
Resumo:
A method for accurate determination of the curvature radius of semiconductor thin films is proposed. The curvature-induced broadening of the x-ray rocking curve (XRC) of a heteroepitaxially grown layer can be determined if the dependence of the full width at half maximum (FWHM) of XRC is measured as a function of the width of incident x-ray beam. It is found that the curvature radii of two GaN films grown on a sapphire wafer are different when they are grown under similar MOCVD conditions but have different values of layer thickness. At the same time, the dislocation-induced broadening of XRC and thus the dislocation density of the epitaxial film can be well calculated after the curvature correction.
Resumo:
The distribution of energy levels of the ground state and the low-lying excited states of hydrogenic impurities in InAs quantum ring was investigated by applying the effective mass approximation and the perturbation method. In 2D polar coordinates, the exact solution to the Schrodinger equation was used to calculate the perturbation integral in a parabolic confinement potential. The numerical results show that the energy levels of electron are sensitively dependent on the radius of the quantum ring and a minimum exists on account of the parabolic confinement potential. With decreasing the radius, the energy spacing between energy levels increases. The degenerate energy levels of the first excited state for hydrogenic impurities are not relieved, and when the degenerate energy levels are split and the energy spacing will increase with the increase in the radius. The energy spacing between energy levels of electron is also sensitively dependent on the angular frequency and will increase with the increases in it. The degenerate energy levels of the first excited state are not relieved. The degenerate energy levels of the second excited state are relieved partially. The change in angular frequency will have a profound effect upon the calculation of the energy levels of the ground state and the low-lying excited states of hydrogenic impurities in InAs quantum ring. The conclusions of this paper will provide important guidance to investigating the optical transitions and spectral structures in quantum ring.
Resumo:
The dependence of the electronic energy levels on the size of quantum dots (QDs) with the shape of spherical lens is studied by using the B-spline technique for the first time. Within the framework of the effective-mass theory, the values of electronic energy levels are obtained as a function of the height, radius and volume of QDs, respectively. When the height or radius of QDs increases, all the electronic energy levels lower, and the separations between the energy levels decrease. For lens-shape QDs, height is the key factor in dominating the energy levels comparing with the effect of radius, especially in dominating the ground-state level. These computational results are compared with that of other theoretical calculation ways. The B-spline technique is proved to be an effective way in calculating the electronic structure in QDs with the shape of spherical lens.
Resumo:
Self-organized Al0.3Ga0.7As islands generated on the (100) facet are achieved by liquid phase epitaxy. Three particularly designed experimental conditions-partial oxidation, deficient solute and air quenching-result in defect-free nucleation. Micron-sized frustums and pyramids are observed by a scanning electron microscope. The sharp end of the tip has a radius of curvature less than 50 nm. It is proposed that such Al0.3Ga0.7As islands may be potentially serviceable in microscale and nanoscale fabrication and related spheres. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Epitaxial growth of Zn-doped InGaAs on InP substrates has been carried out at 550degreesC by LP-MOCVD. Hole concentration as high as 6 x 10(19)cm(-3) has been achieved at the H-2 flow rate of 20 sccm through DEZn bubbler. The lattice constant of Zn-doped InGaAs was found to be dependent on the flow rate of DEZn, and the tensile strain mismatch increases with increasing H-2 flow rate of DEZn. The negative lattice mismatch of heavily Zn-dopped InGaAs may be due to, the small covalent bonding radius of zinc and the combination of butane from ethyl of DEZn,and TEGa. And the latter accelerates the pyrolysis of TEGa, which is the dominant mechanism in determining the negative mismatch of Zn-doped InGaAs. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The Hamiltonian of the wurtzite quantum dots in the presence of an external homogeneous magnetic field is given. The electronic structure and optical properties are studied in the framework of effective-mass envelope function theory. The energy levels have new characteristics, such as parabolic property, antisymmtric splitting, and so on, different from the Zeeman splitting. With the crystal field splitting energy Delta(c)=25 meV, the dark excitons appear when the radius is smaller than 25.85 A in the absence of external magnetic field. This result is more consistent with the experimental results reported by Efros [Phys. Rev. B 54, 4843 (1996)]. It is found that dark excitons become bright under appropriate magnetic field depending on the radius of dots. The circular polarization factors of the optical transitions of randomly oriented dots are zero in the absence of external magnetic field and increase with the increase of magnetic field, in agreement with the experimental results. The circular polarization factors of single dots change from nearly 0 to about 1 as the orientation of the magnetic field changes from the x axis of the crystal structure to the z axis, which can be used to determine the orientation of the z axis of the crystal structure of individual dots. The antisymmetric Hamiltonian is very important to the effects of magnetic field on the circular polarization of the optical transition of quantum dots.