328 resultados para RESOLUTION C-13 NMR
Resumo:
Blends of crystallizable poly(vinyl alcohol) (PVA) with poly(N-vinyl-2-pyrrolidone) (PVPy) were studied by C-13 cross-polarization/magic angle spinning (CP/MAS) n.m.r. and d.s.c. The C-13 CP/MAS spectra show that the blends were miscible on a molecular level over the whole composition range studied, and that the intramolecular hydrogen bonds of PVA were broken and intermolecular hydrogen bonds between PVA and PVPy formed when the two polymers were mixed. The results of a spin-lattice relaxation study indicate that blending of the two polymers reduced the average intermolecular distance and molecular motion of each component, even in the miscible amorphous phase, and that addition of PVPy into PVA has a definite effect on the crystallinity of PVA in the blends over the whole composition range, yet there is still detectable crystallinity even when the PVPy content is as high as 80 wt%. These results are consistent with those obtained from d.s.c. studies.
Resumo:
An extended Goldman-Shen pulse sequence was used to observe indirectly the proton spin diffusion in the blends of polystyrene (PS) with poly(2,6-dimethyl-1,4-phenylene oxides) (PPO). The results indicate that the average distance between PS and PPO is less than 5 angstrom in the intimately mixed phase, but there are heterogeneous domains on a 100-angstrom scale. The data of spin relaxation of carbons, T1(C), for homopolymers and their blends suggest that there is a strong pi-pi electron conjugation interaction between the aromatic rings of PS and those of PPO, while the aromatic rings of PPO drive the aromatic rings of PS to move cooperatively. It is the cooperative motion that markedly improves the impact strength of PS.
Resumo:
The miscibility and morphology of polyimide/polyimide blends, PEI-E/PTI-E(a)) and PBPI-E/IPTI-E(a)), have been studied by means of C-13 CPMAS NMR technique. The results indicate that PEI-E/PTI-E blends are miscible on a molecular level, but molecular aggregation exists in pure PBPI-E specimen as well as PBPI-E/PTI-E blends with high content of PBPI-E, which vanishes in the blends with high content of PTI-E. When the content of PBPI-E is higher than that of PTI-E, the addition of PTI-E to PBPI-E has almost no effect on the size of the PBPI-E rigid domains, but has a large effect on the populations of the PBPI-E rigid domains. It is the intermolecular charge-transfer interaction that plays a critical role in the miscibility of PEI-E/PTI-E and PBPI-E/PTI-E blends.
Resumo:
Hybrid materials incorporating poly(ethylene glycol) (PEG) with tetraethoxysilane (TEOS) via a sol-gel process were studied for a wide range of compositions of PEG by DSC and high resolution solid-state C-13- and Si-29-NMR spectroscopy. The results indicate that the microstructure of the hybrid materials and the crystallization behavior of PEG in hybrids strongly depend on the relative content of PEG. With an increasing content of PEG, the microstructure of hybrid materials changes a lot, from intimate mixing to macrophase separation. It is found that the glass transition temperatures (T-g) (around 373 K) of PEG homogeneously embedded in a silica network are much higher than that (about 223 K) of pure PEG and also much higher in melting temperatures T-m (around 323 K) than PEG crystallites in heterogeneous hybrids. Meanwhile, the lower the PEG content, the more perfect the silica network, and the higher the T-g of PEG embedded in hybrids. An extended-chain structure of PEG was supposed to be responsible for the unusually high T-g of PEG. Homogeneous PEG-TEOS hybrids on a molecular level can be obtained provided that the PEG. content in the hybrids is less than 30% by weight. (C) 1998 John Wiley & Sons, Inc.
Resumo:
The microstructure of two bicomponent and one tricomponent segmented copolymers, based on polydimethylsiloxane, poly(p-hydroxystyrene) or/and polysulfone, were investigated using an extended Goldman-Shen pulse sequence, proton spin-spin relaxation measurements, and C-13 and Si-29 NMR spectra. The results indicate that there exist four phases with different sizes, components and morphological structure in the segmented copolymers studied in this work, i. e., a rigid-chain phase of very slow motion, a rigid-chain-rich phase of slow motion, a flexible-chain-rich phase of fast motion and a flexible-chain phase of faster motion. The sizes of different domains, calculated from the spin diffusion rates, are about 50-100 angstrom for the flexible-chain-rich phase of fast motion and 200-300 angstrom for the flexible-chain phase of faster motion. The relative quantities of polydimethylsiloxane in the flexible-chain phase of fast motion are slightly different in different kinds of segmented copolymers.
Resumo:
C-13 and H-1 NMR technique was used to study the interaction of Gly-Gly with heavy lanthanide cations Dy3+, Ho3+, Er3+, Tm3+ and Yb3+ in aqueous solution. The stability constants for the 1:1 and 1:2 complexes of Gly-Gly with Ho3+ and Yb3+ were determined from the titration curves of chemical shift versus concentration ratio of lanthanide to Gly-Gly. The solution structure of the Ln-Gly-Gly complex was analyzed based upon the C-13 and H-1 lanthanide induced shifts and the results show that in the complex Gly Gly is coordinated to the lanthanide ion through the carboxyl oxygens with the backbone of the ligand in an extended state.
Resumo:
关于双甘肽的~(13)C化学位移行为及其与稀土离子的配位作用前人有过报导。但有关水溶液中双甘肽稀土配合物的结构仍不清楚。本文测定了在重稀土离子Dy~(3+)、Ho~(3+)、Er~(3+)、Tm~(3+)和Yb~(3+)作用下双甘肽~(13)C和~1H的顺磁诱导位移,研究了水溶液中双甘肽稀土配合物的组成及结构。1 实验部分
Resumo:
The thermal and hydrothermal stabilities of HZSM-5 zeolites with crystal sizes less than 100 nm have been studied by multinuclear solid-state NMR, combined with BET and XRD. As evidenced by Al-27 and Si-29 MAS as well as their corresponding cross-polarization/MAS NMR investigations, the thermal stability of nanosized HZSM-5 is not so good as that of microsized HZSM-5. This is due to two processes concerning dealumination and desilicification involved in the calcination of nanosized HZSM-5, while only the dealumination process is conducted in microsized HZSM-5 under the similar calcination process. The hydrothermal stability of nanosized HZSM-5 is, contrary to what was expected, not so bad as that of the microsized HZSM-5 in the course of steam treatment. The actual resistance of the hydrothermal stability to the crystal size of HZSM-5 can be ascribed to an active reconstruction of zeolitic framework through an effective filling of amorphous Si species into nanosized HZSM-5 during hydrothermal treatment. (C) 2001 Published by Elsevier Science B.V.
Resumo:
The local structure of Na-Al-P-O-F glasses, prepared by a novel sol-gel route, was extensively investigated by advanced solid-state NMR techniques. Al-21{F-19} rotational echo double resonance (REDOR) results indicate that the F incorporated into aluminophosphate glass is preferentially bonded to octahedral Al units and results in a significant increase in the concentration of six-coordinated aluminum. The extent of Al-F and Al-O-P connectivities are quantified consistently by analyzing Al-27{P-31} and Al-21{F-19} REDOR NMR data. Two distinct types of fluorine species were identified and characterized by various F-19{Al-27}, F-19{Na-23}, and F-19{P-31} double resonance experiments, which were able to support peak assignments to bridging (Al-F-Al, -140 ppm) and terminal (Al-F, -170 ppm) units. On the basis of the detailed quantitative dipole-dipole coupling information obtained, a comprehensive structural model for these glasses is presented, detailing the structural speciation as a function of composition.
Resumo:
近年来,随着计算机技术的发展,C-13 NMR技术取得巨大的进步,并获得了与日俱增的广泛应用。目前,已成为化学、化工、生物、医学等领域不可缺少的分析技术。C-13 NMR波谱模拟在有机化合物结构自动解析中起着极为重要的作用,它能帮助科学家们对复杂的化合物进行结构解析,并对测定的化合物的化学位移进行验证。本论文在该领域进行了很多有意义的尝试,工作的目的是采用多元统计方法为化合物的C-13 NMR波谱模拟建立相关数学模型,并取得了一些有意义的结果。主要工作如下:1. 对饱和烷烃类化合物进行了~(13)C NMR波谱模拟,通过使用校正的分子连接性指数和几何参数,取得了比较满意的结果,其结果比Crant和Paul的烷烃模拟要好。2. 对环烷烃类化合物进行了~(13)C NMR波谱模拟,得到了具有较好预测能力的相关数学模型。3. 对饱和醇类化合物进行了~(13)C NMR波谱模拟,通过提取共振碳的拓扑指数、电荷参数和几何参数,构造了比较满意的数学模型。4. 对脂肪胺类化合物进行了~(13)C NMR波谱模拟,通过使用拓扑指数、电荷参数和几何参数,获得了比较好的相关数学模型。5. 对饱和醛酮类化合物进行了~(13)C NMR波谱模拟,通过使用拓扑指数、电荷参数和几何参数,获得了比较好的相关数学模型。