165 resultados para Quasiperiodic states
Resumo:
Spin states and persistent currents are investigated theoretically in a quantum ring with an embedded magnetic ion under a uniform magnetic field including the spin-orbit interactions. The magnetic impurity acts as a spin-dependent delta-potential for electrons and results in gaps in the energy spectrum, consequently suppressing the oscillation of the persistent currents. The competition between the Zeeman splittings and the s-d exchange interaction leads to a transition of the electron ground state in the ring. The interplay between the periodic potential induced by the Rashba and Dresselhaus spin-orbit interactions and the delta-potential induced by the magnetic impurity leads to significant variation in the energy spectrum, charge density distribution, and persistent currents of electrons in the ring.
Resumo:
We study the optimal teleportation based on Bell measurements via the thermal states of a two-qubit Heisenberg XXX chain in the presence of the Dzyaloshinsky-Moriya (DM) anisotropic antisymmetric interaction and obtain an optimal unitary transformation. The explicit expressions of the output state and the teleportation fidelity are presented and compared with those of the standard protocol. It is shown that in this protocol the teleportation fidelity is always larger and the unit fidelity is achieved at zero temperature. The DM interaction can enhance the teleportation fidelity at finite temperatures, as opposed to the effect of the interaction in the standard protocol. Cases with other types of anisotropies are also discussed. Copyright (C) EPLA, 2009
Resumo:
The density of states (DOS) above Fermi level of hydrogenated microcrystalline silicon (mu c-Si H) films is correlated to the material microstructure. We use Raman scattering and infrared absorption spectra to characterize the structure of the films made with different hydrogen dilution ratios. The DOS of the films is examined by modulated photocurrent measurement. The results have been accounted for in the framework of a three-phase model comprised of amorphous and crystalline components, with the grain boundary as the third phase. We observed that the DOS increases monotonically as the grain boundary volume fractions f(gb) is increased, which indicates a positive correlation between the DOS and the grain boundary volume fraction.
Resumo:
We investigate theoretically the spin states in InAs/AlSb/GaSb broken-gap quantum wells by solving the Kane model and the Poisson equation self-consistently. The spin states in InAs/AlSb/GaSb quantum wells are quite different from those obtained by the single-band Rashba model due to the electron-hole hybridization. The Rashba spin splitting of the lowest conduction subband shows an oscillating behavior. The D'yakonov-Perel' spin-relaxation time shows several peaks with increasing the Fermi wave vector. By inserting an AlSb barrier between the InAs and GaSb layers, the hybridization can be greatly reduced. Consequently, the spin orientation, the spin splitting, and the D'yakonov-Perel' spin-relaxation time can be tuned significantly by changing the thickness of the AlSb barrier.
Resumo:
The electronic structure and exciton states of cylindrical ZnO nanorods with radius from 2 to 6 nm are investigated based on the framework of the effective-mass theory. Using the adiabatic approximation, the exciton binding energies taking account of the dielectric mismatch are solved exactly when the total angular momentum of the exciton states L = 0 and L = +/- 1. We find that the exciton binding energies can be enhanced greatly by the dielectric mismatch and the calculated results are almost consistent with the experimental data. Meanwhile, we obtain the optical transition rule when the small spin-obit splitting Delta(so) of ZnO is neglected. Furthermore, the radiative lifetime and linear optical susceptibilities chi(w) of the exciton states are calculated theoretically. The theoretical results are consistent with the experimental data very well. (C) 2009 American Institute of Physics. [DOI 10.1063/1.3125456]
Resumo:
Beating patterns in longitudinal resistance caused by the symmetric and antisymmetric states were observed in a heavily doped InGaAs/InAlAs quantum well by using variable temperature Hall measurement. The energy gap of symmetric and antisymmetric states is estimated to be 4meV from the analysis of beating node positions. In addition, the temperature dependences of the subband electron mobility and concentration were also studied from the mobility spectrum and multicarrier fitting procedure.
Resumo:
The electronic structure of a diluted magnetic semiconductor (DMS) quantum dot (QD) is studied within the framework of the effective-mass theory. We find that the energies of the electron with different spin orientation exhibit different behavior as a function of magnetic field at small magnetic fields. The energies of the hole decreases rapidly at low magnetic fields and saturate at higher magnetic field due to the sp-d exchange interaction between the carriers and the magnetic ions. The mixing effect of the hole states in the DMS QD can be tuned by changing the external magnetic field. An interesting crossing behavior of the hole ground state between the heavy-hole state and the light-hole state is found with variation of the QD radius. The strength of the interband optical transition for different circular polarization exhibts quite different behavior with increasing magnetic field and QD radius.
Resumo:
The magnetic properties of RCo5Ga7 (R = Y, Tb, Dy, Ho and Er) compounds which crystallize in the ScFe6Ga6-type structure have been studied. The compounds with R, Y, Tb, Dy, Ho and Er display behaviour similar to semiconductors. The Co transition metal sublattice is ferrimagnetic with a very low spontaneous magnetization. The ferrimagnetic ordering observed for R = Y, Tb, Dy, Ho and Er is due to the transition metal sublattice with transition temperatures at about 295 K. At low temperatures, the magnetic ordering for R Tb, Dy, Ho and Er is due to the rare-earth sublattice, which is ferromagnetic with a Curie temperature below 5 K. By fitting the linear part of the inverse magnetization, the effective magnetic moment of the R ion is found to be close to its expected theoretical value, with paramagnetic Curie temperatures below 5 K. Due to the paramagnetic nature of the R sublattice above 60 K, the ferrimagnetic ordering temperature of the Co sublattice does not vary with the type of rare-earth ion. The irreversibility of the magnetization of YCo5Ga7, as measured in zero-field cooled (ZFC) and field cooled (FC) states, is attributed to movement of domain walls. Application of a large enough applied field completes the movement of the domain wall from the low-temperature to the high-temperature one at 5 K. With a very low magnetic field 100 Oe, the difference between the ZFC and the FC shrinks. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We propose a scheme to generate maximally entangled states (MESs) of multiple three-level atoms in microwave cavity QED based on the resonant atom-cavity interaction. In the scheme, multiple three-level atoms initially in their ground states are sequently sent through two suitably prepared cavities. After a process of appropriate atom-cavity interaction, a subsequent measurement on the second cavity field projects the atoms onto the MESs. The practical feasibility of this method is also discussed.
Resumo:
Antiphase dynamics has been observed experimentally for the laser modes operation in a laser-diode-pumped Q-switched microchip Yb:YAG laser with GaAs as a saturable absorber in the presence of spatial hole-burning. The Q-switched pulses sequences of two modes at different pump power have been obtained. The experimental results have shown that the pulses sequences displayed classic antiphase dynamics. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
We have investigated the evolution of exciton state filling as a function of excitation power density in InAs/GaAs quantum dots (QDs). In addition to the emission bands of exciton recombination corresponding to the atom-like S, P, and D, etc. shells of quantum dots, it was observed that some extra states, P-' (between the S and P shells) and D-' (between the P and D shells), appear in the spectra with increasing number of excitons occupying the QDs. The emergence of these intershell excitonic levels is an experimental demonstration of strong exciton-exciton exchange interaction and coupling as well as state mixing and hybridization of a multiexciton system in quantum dots.
Resumo:
The subband structure and inter-subband transition as a function of gate voltage are determined by solving the Schrodinger and Poisson equations self-consistently in an AlxGa1-xN/GaN heterostructure. Different aluminum mole fraction and thickness of AlxGa1-xN barrier are considered. Calculation results show that energy difference between the first and second subband covers a wide range (from several tens to hundreds milli-electron volt) by applying different gate voltage, which corresponds to the midinfrared and long-wave infrared wavelength scope. Furthermore, such a modulation on the subband transition energy is much more pronounced for the structure with thin barrier. When the applied positive gate voltage is increased, the triangle well formed at the interface turns to be deeper and narrower, which enhances the confinement for electrons. As a result, the overlap between electron wave function at two subbands increases, and thus the optical intersubband transition also enhances its intensity. This tendency is in good agreement with the available data in the literature. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A set of GaNxAs1-x samples with a small content of nitrogen (N) (< 1%) were investigated by continuous-wave photoluminescence (PL), pulse-wave excitation PL, and photo reflectance technology. Temperature-and excitation-dependence of PL disclosed the intrinsic band gap properties of alloy states in GaNxAs1-x, which was extremely different from the N-related impurity states. At the same time, PR spectra were also studied in this work.
Resumo:
We arrive at a necessary and sufficient criterion that can be readily used for interconvertibility between general, all-tripartite Gaussian states under local quantum operation. The derivation involves a systematic reduction that converts the original complex conditions in high-dimensional, 6n x 6n matrix space eventually into 2 x 2 matrix problems.
Resumo:
We propose a method for uniformly calculating the electronic states of a hydrogenic donor impurity in low-dimensional semiconductor nano-structures in the framework of effective-mass envelope-function theory, and we study the electronic structures of this systems. Compared to previous methods, our method has the following merits: (a) It can be widely applied in the calculation of the electronic states of hydrogenic donor impurities in nano-structures of various shapes; (b) It can easily be extended to study the effects of external fields and other complex cases; (c) The excited states are more easily calculated than with the variational method; (d) It is convenient to calculate the change of the electronic states with the position of a hydrogenic donor impurity in nano-structures; (e) The binding energy can be calculated explicitly. (c) 2007 Elsevier B.V. All rights reserved.