39 resultados para Pre-trial detention
Resumo:
Electron irradiation-induced deep level defects have been studied in InP which has undergone high-temperature annealing in phosphorus and iron phosphide ambients, respectively. In contrast to a high concentration of irradiation-induced defects in as-grown and phosphorus ambient annealed InP, InP pre-annealed in iron phosphide ambient has a very low concentration of defects. The phenomenon has been explained in terms of a faster recombination of radiation-induced defects in the annealed InP. The radiation-induced defects in the annealed InP have been compared and studied. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Irradiation has been widely reported to damage organisms by attacking on proteins, nucleic acid and lipids in cells. However, radiation hormesis after low-dose irradiation has become the focus of research in radiobiology in recent years. To investigate the effects of pre-exposure of mouse brain with low-dose C-12(6+) ion or Co-60 gamma (gamma)-ray on male reproductive endocrine capacity induced by subsequent high-dose irradiation, the brains of the B6C3F(1) hybrid strain male mice were irradiated with 0.05 Gy of C-12(6+) ion or Co-60 gamma-ray as the pre-exposure dose, and were then irradiated with 2 Gy as challenging irradiation dose at 4 h after pre-exposure. Serum pituitary gonadotropin hormones, follicle-stimulating hormone (FSH) and luteinizing hormone (LH), testosterone, testis weight, sperm count and shape were measured on the 35th day after irradiation. The results showed that there was a significant reduction in the levels of serum FSH, LH, testosterone, testis weight and sperm count, and a significant increase in sperm abnormalities by irradiation of the mouse brain with 2 Gy of C-12(6+) ion or Co-60 gamma-ray. Moreover, the effects were more obvious in the group irradiated by C-12(6+) ion than in that irradiated by Co-60 gamma-ray. Pre-exposure with low-dose C-12(6+) ion or Co-60 gamma-ray significantly alleviated the harmful effects induced by a subsequent high-dose irradiation.
Resumo:
To investigate the effects of pre-exposure of mouse testis to low-dose C-12(6+) ions on cytogenetics of spermatogonia and spermatocytes induced by subsequent high-dose irradiation. the testes of outbred Kun-Ming strain mice were irradiated with 0.05 Gy of C-12(6+) ions as the pre-exposure dose, and then irradiated with 2 Gy as challenging dose at 4 h after per-exposure. Poly(ADP-ribose) polymerase (PARPs) activity and PARP-1 protein expression were respectively measured by using the enzymatic and Western blot assays at 4 h after irradiation; chromosomal aberrations in spermatogonia and spermatocytes were analyzed by the air-drying method at 8 h after irradiation. The results showed that there was a significant increase in the frequency of chromosomal aberrations and significant reductions of PARP activity and PARP-1 expression level in the mouse testes irradiated with 2 Gy of C-12(6+) ions. However, pre-exposure of mouse testes to a low dose of C-12(6+) ions significantly increased PARPs activity and PARP-1 expression and alleviated the harmful effects induced by a subsequent high-dose irradiation. PARP activity inhibitor 3-aminobenzamide (3-AB) treatment blocked the effects of PARP-1 on cytogenetic adaptive response induced by low-dose C-12(6+) ion irradiation. The data suggest that pre-exposure of testes to a low dose of heavy ions can induce cytogenetic adaptive response to subsequent high-dose irradiation. The increase of PARP-1 protein induced by the low-dose ionizing irradiation may be involved in the mechanism of these observations. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The combination of ionizing radiation and gene therapy has been investigated. However, there are very few reports about the combination of heavy-ion irradiation and gene therapy. To determine if the pre-exposure to low-dose heavy ion beam enhances the suppression of AdCMV-p53 on non-small lung cancer (NSLC), the cells pre-irradiated or non-irradiated were infected with 20, 40 MOI of AdCMV-p53. Survival fraction and the relative biology effect (RBE) were determined by clonogenic assay. The results showed that the proportions of p53 positive cells in C-12(6+) beam induced AdCMV-p53 infected cells were more than 90%, which were significantly more than those in gamma-ray induced AdCMV-p53 infected cells. The pre-exposure to low-dose 12C6+ beam significantly prevented the G(0)/G(1) arrest and activated G(2)/M checkpoints. The pre-exposure to C-12(6+) beam significantly improved cell to apoptosis. RBEs for the C-12(6+)+ AdCMV-p53 infection groups were 30%-60%,20% -130% and 30%-70% more than those for the C-12(6+)_irradiated only, AdCMV-p53 infected only, and gamma-irradiation induced AdCMVp53 infected groups, respectively. The data suggested that the pre-exposure to low-dose C-12(6+) beam significantly promotes exogenous p53 expression in NSLC, and the suppression of AdCMV-p53 gene therapy on NSLC.
Resumo:
The brain of the Kun-Ming strain mice were irradiated with 0.05 Gy of C-12(6+) ion or Co-60 gamma-ray as the pre-exposure dose, and were then irradiated with 2 Gy of 12C6+ ion or Co-60 gamma-ray as challenging irradiation dose at 4 h after per-exposure. Body weight and serum growth hormone (GH) concentration were measured at 35th day after irradiation. The results showed that irradiation of mouse brain with 2 Gy of C-12(6+) ion or Co-60 gamma-ray significantly diminished mouse body weight and level of serum GH. The relative biological effectiveness values of a 2 Gy dose of C-12(6+) ion calculated with respect to Co-60 gamma-ray were 1.47 and 1.34 for body weight and serum GH concentration, respectively. Pre-exposure with a low-dose (0.05 Gy) of C-12(6+) ion or Co-60 gamma-ray significantly alleviated reductions of mouse body weight and level of serum GH induced by a subsequent high-dose (2 Gy) irradiation. The data suggested that low-dose ionizing irradiation can induce adaptive hormetic responses to the harmful effects of pituitary by subsequent high-dose exposure.
Resumo:
目的:评价重离子束对皮肤恶性肿瘤放射治疗的近期疗效和毒副反应。方法:29例皮肤恶性肿瘤患者分6批接受重离子束放射治疗,其中恶性黑色素瘤13例,皮肤鳞癌及Bowen’s病各6例,基底细胞癌2例,其他皮肤恶性肿瘤2例。照射总剂量(50~70)GyE/(6~12)d,单次剂量5.5~11.67GyE,1f/d,连续治疗。采用RTOG标准和WHO近期疗效标准分别评价毒副反应和近期疗效。结果:截止2009-05,中位随访时间为13.5个月(1~25个月),随访率为100%。29例患者中完全缓解(CR)24例(82.8%),部分缓解(PR)5例(17.2%),有效率(RR)为100%,中位生存时间为22.8个月(95%CI:20.6~24.9)。皮肤反应0度11例(37.9%),Ⅰ度9例(31.0%),Ⅱ度6例(20.7%),Ⅲ度2例(6.9%),Ⅳ度1例(3.4%);血液毒副反应治疗前后无明显改变。结论:重离子束(12C6+)放射治疗皮肤恶性肿瘤近期疗效好,并发症轻,远期疗效、晚期副反应等尚需进一步长期全面的观察和更多的研究提供依据。
Resumo:
2-(9-Carbazole)-ethyl-chloroformate (CEOC), a novel pre-column fluorescence derivatization reagent, has been developed for the analysis of aromatic amines. Taking five monocyclic aromatic amines (o-toluidine, aniline, 3,4-dimethylaniline, N-ethyl-p-toluidine, and p-phenylenediamine) as testing compounds, derivatization conditions such as pH of borate buffer, reaction time and fluorescent tagging reagent concentration have been investigated. By a one-step procedure, CEOC reacts readily with the aromatic amines to form stable derivatives with excitation and emission wavelengths, respectively, at 293 and 360 nm. This derivatization reaction could be finished within 20 min even at room temperature. The peak shapes of the derivatized aromatic amines can be improved greatly without any addition of competition amines into the mobile phase. Furthermore, this method can offer excellent quantitative precision with high tolerance of the matrix of samples. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
In this paper, the modification of polypropylene (PP) with acrylic acid (AA) by reactive extrusion using pre-irradiated PP (rPP) as initiator was investigated. It was found the relatively high graft degree (Gd) and slight degradation of modified PP was obtained when 20 wt% rPP was used. This result can be explained in terms of effective concentration of free radicals.