390 resultados para Optically pumped
Resumo:
Two basic types of depolarization mechanisms, carrier-carrier (CC) and carrier-phonon (CP) scattering, are investigated in optically excited bulk semiconductors (3D), in which the existence of the transverse relaxation time is proven based on the vector property of the interband transition matrix elements. The dephasing rates for both CC and CP scattering are determined to be equal to one half of the total scattering-rate-integrals weighted by the factors (1 - cos chi), where chi are the scattering angles. Analytical expressions of the polarization dephasing due to CC scattering are established by using an uncertainty broadening approach, and analytical ones due to both the polar optical-phonon and non-polar deformation potential scattering (including inter-valley scattering) are also presented by using the sharp spectral functions in the dephasing rate calculations. These formulas, which reveal the trivial role of the Coulomb screening effect in the depolarization processes, are used to explain the experimental results at hand and provide a clear physical picture that is difficult to extract from numerical treatments.
Resumo:
The origin of the transverse relaxation time in optically excited semiconductor quantum wells is investigated based on the vector property of the interband transition matrix elements. The dephasing rate due to carrier-carrier (CC) scattering is found to be equal to half of the common momentum relaxation rate. The analytical expression of the polarization dephasing due to CC scattering in two-dimension is established and the dependence of the dephasing rate Gamma(cc) on the carrier density N is determined to be Gamma(cc) = constant (.) N-1/2, which is used to explain the experimental results and provides a promising physical picture. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The application of a Michelson interferometer with a self-pumped phase-conjugate mirror to measure small vibration amplitudes of a rough surface is described. The distorted wave front of the light that is diffusely reflected from the rough surface is restored by phase conjugation to provide an interference signal with a high signal-to-noise ratio. The vibration amplitudes of a stainless-steel sample are measured with a precision of similar to 5 nm. (C) 2000 Optical Society of America OCIS codes: 120.3180, 190.5040, 120.7280.
Resumo:
A laser-diode array (LDA) side-pumped Nd:YAG slab ring laser is described that incorporates a prism-shaped acousto-optic modulator to enforce unidirectional operation and Q-switching. When pumped by the maximum power of 50 W, Q-switched energies of 3.6 mJ and 50 ns duration, corresponding to a peak power of 72 kW, are obtained. (C) 1999 Society of Photo-Optical Instrumentation Engineers. [S0091-3286(99)01306-9].
Resumo:
We present the design and experimental results for a diode pumped Nd:YLF regenerative amplifier applied to amplify a nanosecond laser pulse. Numerical simulation shows that the maximum output energy and the best stability can be obtained when the regenerative amplifier operates in a saturated mode for all pulse duration and temporal profiles. Using extra post-pulse is a good method to decrease the square-pulse distortion caused by gain saturation effect. The amplifier shows output energy of 4.2mJ with a total energy gain of more than 107 and output energy stability of better than 1% rms. When extra post-pulse is added, square-pulse distortion is decreased from 1.33 to 1.17 for the amplifier that is seeded with an optical pulse of 3 ns.
Resumo:
Output beam quality of edge pumped planar waveguide lasers with confocal unstable resonators is investigated by diffraction methods, taking into account gain saturation, asymmetric pumping, and beam interaction. The influences of pumping uniformity, doping concentration, cavity length and effective Fresnel number are analyzed with respect to output beam quality and pumping efficiency. It is found that good beam quality and high efficiency can be obtained with asymmetric pumping and optimized negative branch confocal unstable resonators. (c) 2005 The Optical Society of Japan.
Resumo:
By employing a continuous-wave (CW) Ti:sapphire tunable laser as a pumping source and a Cr4+:YAG single crystal as the saturable absorber (SA), a passively Q-switched Nd:YAG ceramic laser has been demonstrated at room temperature. With an absorbed pumping power of 541 mW at 808 nm, an average output power of 61 mW at 1064 nm has been obtained with 3.5 mu J pulse energy, 15 ns pulse width and 18.18 kHz repetition rate, and the corresponding slope-efficiency is 15%. The relationships between the pulse width, repetition rate, average output power, pulse energy, and peak power on the absorbed pumping power for different initial transmission of the Cr4+:YAG SA are discussed separately. The Nd:YAG ceramic is one of the most promising laser materials for compact, efficient, all-solid-state pulsed lasers.
Resumo:
Based on graphic analysis design method of optical resonator, a simple design expression of V-folded cavity of end-pumped solid-state lasers with TEM00 operation is described, which satisfies two criterias of the resonator design. We give numerical simulation of spot size as a function of thermal focal length using this design approach whose advantages are validated experimentally.
Resumo:
The formation of transverse modes in longitudinally pumped miniature slab lasers is investigated theoretically and experimentally. The longitudinally non-uniform gain-guiding is studied by expanding the electric field into the Hermite-Gaussian functions that satisfy boundary conditions of the resonator. Non-Gaussian transversal beam profiles in the near field are found and the beam diameter is reduced when the pump spot becomes smaller. The experimental observation agrees with the theoretical calculation.