22 resultados para Object Segmentation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new region-based unified tensor level set model for image segmentation. This model introduces a three-order tensor to comprehensively depict features of pixels, e.g., gray value and the local geometrical features, such as orientation and gradient, and then, by defining a weighted distance, we generalized the representative region-based level set method from scalar to tensor. The proposed model has four main advantages compared with the traditional representative method as follows. First, involving the Gaussian filter bank, the model is robust against noise, particularly the salt-and pepper-type noise. Second, considering the local geometrical features, e. g., orientation and gradient, the model pays more attention to boundaries and makes the evolving curve stop more easily at the boundary location. Third, due to the unified tensor pixel representation representing the pixels, the model segments images more accurately and naturally. Fourth, based on a weighted distance definition, the model possesses the capacity to cope with data varying from scalar to vector, then to high-order tensor. We apply the proposed method to synthetic, medical, and natural images, and the result suggests that the proposed method is superior to the available representative region-based level set method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new image segmentation method that applies an edge-based level set method in a relay fashion. The proposed method segments an image in a series of nested subregions that are automatically created by shrinking the stabilized curves in their previous subregions. The final result is obtained by combining all boundaries detected in these subregions. The proposed method has the following three advantages: 1) It can be automatically executed without human-computer interactions; 2) it applies the edge-based level set method with relay fashion to detect all boundaries; and 3) it automatically obtains a full segmentation without specifying the number of relays in advance. The comparison experiments illustrate that the proposed method performs better than the representative level set methods, and it can obtain similar or better results compared with other popular segmentation algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper a general analytic expression has been obtained and confirmed by a computer simulation which links the surface roughness of an object under study in an emission electron microscope and it's resolution. A quantitative derivation was made for the model case when there is a step on the object surface. It was shown that the resolution is deteriorated asymmetrically relative to the step. The effect sets a practical limit to the ultimate lateral resolution obtainable in an emission electron microscope.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crowding, generally defined as the deleterious influence of nearby contours on visual discrimination, is ubiquitous in spatial vision. Specifically, long-range effects of non-overlapping distracters can alter the appearance of an object, making it unrecognizable. Theories in many domains, including vision computation and high-level attention, have been proposed to account for crowding. However, neither compulsory averaging model nor insufficient spatial esolution of attention provides an adequate explanation for crowding. The present study examined the effects of perceptual organization on crowding. We hypothesize that target-distractor segmentation in crowding is analogous to figure-ground segregation in Gestalt. When distractors can be grouped as a whole or when they are similar to each other but different from the target, the target can be distinguished from distractors. However, grouping target and distractors together by Gestalt principles may interfere with target-distractor separation. Six experiments were carried out to assess our theory. In experiments 1, 2, and 3, we manipulated the similarity between target and distractor as well as the configuration of distractors to investigate the effects of stimuli-driven grouping on target-distractor segmentation. In experiments 4, 5, and 6, we focused on the interaction between bottom-up and top-down processes of grouping, and their influences on target-distractor segmentation. Our results demonstrated that: (a) when distractors were similar to each other but different from target, crowding was eased; (b) when distractors formed a subjective contour or were placed regularly, crowding was also reduced; (c) both bottom-up and top-down processes could influence target-distractor grouping, mediating the effects of crowding. These results support our hypothesis that the figure-ground segregation and target-distractor segmentation in crowding may share similar processes. The present study not only provides a novel explanation for crowding, but also examines the processing bottleneck in object recognition. These findings have significant implications on computer vision and interface design as well as on clinical practice in amblyopia and dyslexia.