94 resultados para Nanosize Zirconia
Probing into the catalytic nature of Co/sulfated zirconia for selective reduction of NO with methane
Resumo:
In this work, the structural and surface properties of Co-loaded sulfated zirconia (SZ) catalysts were studied by X-ray diffraction (XRD), N-2 adsorption, NH3-TPD, FT-IR spectroscopy, H-2-TPR, UV-vis diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), and NO-TPD. NH3-TPD and FT-IR spectra results of the catalysts showed that the sulfation process of the support resulted in the generation of strong Bronsted and Lewis acid sites, which is essential for the SCR of NO with methane. On the other hand, the N-2 adsorption, H-2-TPR, UV/vis DRS, and XPS of the catalysts demonstrated that the presence of the SO42- species promoted the dispersion of the Co species and prevented the formation Of Co3O4. Such an increased dispersion of Co species suppressed the combustion reaction of CH4 by O-2 and increased the selectivity toward NO reduction. The NO-TPD proved that the loading of Co increased the adsorption of NO over SZ catalysts, which is another reason for the promoting effect of Co. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
An attractive Fischer-Tropsch catalyst was prepared using an activated carbon as carrier to support cobalt based catalysts. Zr promoted Co/AC catalysts remarkably enhanced the activity and the selectivity toward diesel distillates and lower the methane selectivity. This modification may be attributed to specific behavior of activated carbon with high surface area and the weak interaction between metallic cobalt active sites and activated carbon. It was emphasized that the pore size of activated carbon played a very important role in restricting the growth of carbon chain to wax.
Resumo:
The catalytic performances of ZrO2-based catalysts were evaluated for the synthesis of higher alcohols from synthesis gas. The crystal phase structures were characterized by X-ray diffraction (XRD) and UV Raman. The results indicated that ZrO2 and Pd modified ZrO2 catalysts were effective catalysts in the synthesis of ethanol or isobutanol, and their selectivities basically depended on the crystal phase of ZrO2 surface. The ZrO2 with surface tetragonal crystal phase exhibited a high activity to form ethanol, while the ZrO2 with surface monoclinic crystal phase exhibited a high activity to form isobutanol. Temperature-programmed desorption (TPD) experiment indicated that the high activity of isobutanol formation from synthesis gas over monoclinic zirconia was due probably to the strong Lewis acidity of Zr4+ cations and the strong Lewis basicity of O2- anions of coordinative unsaturated Zr4+-O2- pairs on the surface of monoclinic ZrO2. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
ZrO2-A and ZrO2-B catalysts were prepared by two different coprecipitation methods and their performance of CO hydrogenation was studied. The results indicated that ZrO2 and Li-, Pd- and Mn-modified ZrO2 catalysts exhibited good selectivity and high STY to higher alcohols. The surface characteristics of ZrO2-A and ZrO2-B samples were investigated by means of BET, NH3-TPD, XRD and UV Raman technique. The tetragonal zirconia on the surface region of ZrO2-A and Li-Pd-Mn/ZrO2-A catalysts may be responsible for the high selectivity towards ethanol, while the monoclinic zirconia on the surface of ZrO2-B and Li-Pd-Mn/ZrO2-B catalysts may be crucial to the high isobutanol selectivity.
Resumo:
The phase evolution of yttrium oxide and lanthanum oxide doped zirconia (Y2O3-ZrO2 and La2O3-ZrO2, respectively) from their tetragonal to monoclinic phase has been studied using UV Raman spectroscopy, visible Raman spectroscopy and XRD. UV Raman spectroscopy is found to be more sensitive at the surface region while visible Raman spectroscopy and XRD mainly give the bulk information. For Y2O3-ZrO2 and La2O3-ZrO2, the transformation of the bulk phase from the tetragonal to the monoclinic is significantly retarded by the presence of yttrium oxide and lanthanum oxide. However, the tetragonal phase in the surface region is difficult to stabilize, particularly when the stabilizer's content is low. The phase in the surface region can be more effectively stabilized by lanthanum oxide than yttrium oxide even though zirconia seemed to provide more enrichment in the surface region of the La2O3-ZrO2 sample than the Y2O3-ZrO2 sample, based on XPS analysis. The surface structural tension and the enrichment of the ZrO2, component in the surface region of ZrO2-Y2O3 and ZrO2-La2O3 might be the reasons for the striking difference between the phase change in the surface region and the bulk. Accordingly, the stabilized tetragonal surface region can significantly prevent the phase transition from developing into the bulk when the stabilizer's content is high.
Resumo:
Tetralin hydrogenation (HYD) and thiophene hydrodesulfurization (HDS) were studied for the supported MoS2 and WS2 sulfides, either non-promoted or promoted with Co and Ni. The supports used were ZrO2, alumina-stabilized TiO2 and pure alumina. Preparation of catalysts included presulfidation of non-promoted system with subsequent addition of promoter and resulfidation. It has been found that the nature of promoter plays determining role for the catalytic performance. The most active in both HYD and HDS reactions are Ni-promoted Mo and W catalysts, supported on ZrO2. (C) 2003 Published by Elsevier B.V.
Resumo:
8YSZ fibers were synthesized by calcination of PVP/zirconium oxychloride/yttrium nitrate composite fibers (PVP-Precursor) obtained by electrospinning. Scanning electron microscopy (SEM) indicated that the 8YSZ fibers are hollow and the gas released during organic binder decomposition resulted in the formation of hollow center in fibers
Resumo:
Fast densification of 8YSZ ceramics under a high pressure of 4.5 GPa was carried out at different temperatures (800, 1000, 1450 degrees C), by which a high relative density above 92% could be obtained. FT-Raman spectra indicate that the 8YSZ underwent a phase transition from partially tetragonal to partially cubic phase as temperatures increase from 1000 to 1450 degrees C when sintering under high pressure. The electrical properties of the samples under different high-pressure sintering conditions were measured by complex impedance method. The total conductivity of 0.92 x 10(-2) S cm(-1) at 800 degrees C has been obtained for 8YSZ under high pressure at 1450 degrees C, which is about 200 degrees C lower than that of the samples prepared by conventional pressureless sintering.
Resumo:
A dense clad overlay with chemical inertness was achieved on top of the plasma-sprayed YSZ thermal barrier coatings by laser in order to protect them from hot-corrosion attack. The Al2O3-clad YSZ coating exhibited good hot-corrosion behavior in contact with salt mixture of vanadium pentoxide (V2O5) and sodium sulfate (Na2SO4) for a longtime of 100 h at 1173 K. The LaPO4-clad YSZ coating showed corrosion resistance inferior to the Al2O3-clad one. Yttria was leached from YSZ by reaction between Y2O3 and V2O5, which caused progressive destabilization transformation of YSZ from tetragonal (t) to monoclinic (m) phase. The chemical inertness of the clad layers and the restrained infiltration of the molten corrosive salts by the dense clad layers were primary contributions to improvement of the hot-corrosion resistances.