45 resultados para Mm3 Force-field


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Molecular dynamics (MD) simulations of a polyethersulfone (PES) chain are carried out in the amorphous state by using the Dreiding 2.21 force field at four temperatures. Two types of molecular motion, i.e, rotations of phenylene rings and torsions of large segments containing two oxygen atoms, two sulfur atoms, and five phenylene rings on the backbone, are simulated. The modeling results show that the successive phenylene rings should be in-phase cooperative rotations, whereas the successive large segments should be out-of-phase cooperative torsions. By calculating the diffusion coefficient for the phenylene ring rotations, it is found that this rotation contributes to the beta -transition of PES.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In Paper I (Hu, 1982), we discussed the the influence of fluctuation fields on the force-free field for the case of conventional turbulence and demonstrated the general relationships. In the present paper, by using the approach of local expansion, the equation of average force-free field is obtained as (1+b)×B 0=(#x002B;a)B 0#x002B;a (1)×B 0#x002B;K. The average coefficientsa,a (1),b, andK show the influence of the fluctuation fields in small scale on the configurations of magnetic field in large scale. As the average magnetic field is no longer parallel to the average electric current, the average configurations of force-free fields are more general and complex than the usual ones. From the view point of physics, the energy and momentum of the turbulent structures should have influence on the equilibrium of the average fields. Several examples are discussed, and they show the basic features of the fluctuation fields and the influence of fluctuation fields on the average configurations of magnetic fields. The astrophysical environments are often in the turbulent state, the results of the present paper may be applied to the turbulent plasma where the magnetic field is strong.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We theoretically study the conducting electronic contribution to the cohesive force in a metallic nanowire irradiated under a transversely polarized external electromagnetic field at low temperatures and in the ballistic regime. In the framework of the free-electron model, we have obtained a time-dependent two-level electronic wavefunction by means of a unitary transformation. Using a thermodynamic statistical approach with this wavefunction, we have calculated the cohesive force in the nanowire. We show that the cohesive force can be divided into two components, one of which is independent of the electromagnetic field (static component), which is consistent with the existing results in the literature. The magnitude of the other component is proportional to the electromagnetic field strength. This extra component of the cohesive force is originally from the coherent coupling between the two lateral energy levels of the wire and the electromagnetic field.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

2-(4-Biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxdiazole (PBD) is a good electron-transporting material and can form single crystals from solution. In this work, solution cast PBD single crystals with different crystallographic axes (b, c) perpendicular to the Au/S substrates in large area are achieved by controlling the rate of solvent evaporation in the presence and absence of external electrostatic field, respectively. The orientation of these single crystals on Au/S substrate was characterized by transmission electron microscopy (TEM) and atomic force microscopy (AFM). Conducting probe atomic force microscopy (CP-AFM) was used to measure the charge transport characteristics of PBD single crystals grown on Au/S substrates. Transport was measured perpendicular to the substrate between the CP-AFM tip and the Au/S substrate. The electron mobility of 3 x 10(-3) cm(2)/(V s) for PBD single crystal along crystallographic b-axis is determined. And the electron mobility of PBD single crystal along the c-axis is about 2 orders of magnitude higher than that along the b-axis due to the anisotropic charge transport at the low voltage region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The melt flow and temperature distribution in a 200 mm silicon Czochralski furnace with a cusp magnetic field was modeled and simulated by using a finite-volume based FLUTRAPP ( Fluid Flow and Transport Phenomena Program) code. The melt flow in the crucible was focused, which is a result of the competition of buoyancy, the centrifugal forces caused by the rotations of the crucible and crystal, the thermocapillary force on the free surfaces and the Lorentz force induced by the cusp magnetic field. The zonal method for radiative heat transfer was used in the growth chamber, which was confined by the crystal surface, melt surface, crucible, heat shield, and pull chamber. It was found that the cusp magnetic field could strength the dominant counter-rotating swirling flow cell in the crucible and reduce the flow oscillation and the pulling-rate fluctuation. The fluctuation of dopant and oxygen concentration in the growing crystal could thus be smoothed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The perturbation theory is applied further to the discussion of the equilibrium properties of a sunspot-like magnetic field with a strong twisted component. The basic state reduces to the usual one discussed extensively for the axisymmetric magnetostatic equilibrium with twisted component of magnetic field, and the perturbed state is described by two coupled equations. As the magnetic force-line is twisted, there is a magnetic tension in the azimuthal direction. In this case, the perturbed total pressure is no longer independent of the azimuthal variable θ, and the magnetic field in the dark penumbal fibril may be either stronger or weaker relatively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The magnetic flux tube concentrating strong magnetic field is the basic configuration of magneticfield in the solar atmosphere. In the present paper, the equilibrium of isolated magnetic flux tube inthe solar atmosphere is discussed. In the viewpoint of mathematics, the boundary condition is nonlinearand the position of boundary needs to be determined by the physical condition although the equation ofmagnetic potential is linear for the linear force-free field. Analytical solutions to the arches of bothuniform circular cross-section and non-uniform cross section have been obtained. The results show thatthe nonlinear problem may have or not have any solution according to different azimuthal components of the magnetic field; the number of solutions to the nonlinear problem is four at most, and two in some cases. In the present paper, the analytical solutions to the approximations of both fat and slender arches are given in detail, and the general features of magnetic arch structure are shown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The induced flow fields by internal solitary waves and its actions on cylindrical piles in density stratified ocean with a basic density profile and a basic velocity profile are investigated. Some results, such as the time evolution of flow fields and hydrodynamic forces on the piles are yielded both by theoretical analysis and numerical calculation for general and specific cases. Several kinds of ambient sea conditions of the South China Sea are specified for numerical simulation. Moreover, the effects of relative density difference, depth ratio and wave steepness on maximal total force and total torque are analyzed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Static recording characteristic of super-resolution near-field structure with antimony (Sb) is investigated in this paper. The recording marks are observed by a scanning electron microscopy (SEM), a high-resolution optical microscopy with a CCD camera and an atomic force microscopy (AFM). The super-resolution mechanism is also analyzed based on these static recording marks. Results show that the light reaching on recording layer is composed of two parts, one is the linear transmissive light (propagating field) and the other is the nonlinear evanescent light in the optical near field. The evanescent light may be greatly enhanced in the center of the spot because Sb will transit from a semiconductor to a metal when it is melted under the high laser power irradiation. This local melted area in the spot center may be like a metal tip in the optical near field that can collect and enhance the information that is far beyond the diffraction limit, which leads to the super-resolution recording and readout. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Si-doped nonpolar a-plane GaN films were grown on nanopatterned sapphire substrates by a low-pressure metal organic chemical vapor deposition (MOCVD) system. The structure, morphology and field emission properties of the sample were studied by means of high-resolution X-ray diffraction (HRXRD), atomic force microscopy (AFM), and field emission measurement. The XRD analysis shows that the sample is a nonpolar a-plane (11 (2) over bar0) GaN film. The field emission measurement shows that the nonpolar GaN films exhibit excellent field emission properties with a threshold emission field of as low as 10 V/mu m at a current density of 0.63 mu A/cm(2), and a high field emission current density of 74 mA/cm(2) at an applied field of 24 V/mu m. Moreover, the Fowler-Nordheirn plot of the sample fits a near linear relation. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ZnO films deposited by magnetron sputtering were treated by H/O plasma. It is found that the field emission (FE) characteristics of the ZnO film are considerably improved after H-plasma treatment and slightly deteriorated after O-plasma treatment. The improvement of FE characteristics is attributed to the reduced work function and the increased conductivity of the ZnO H films. Conductive atomic force microscopy was employed to investigate the effect of the plasma treatment on the nanoscale conductivity of ZnO, these findings correlate well with the FE data and facilitate a clearer description of electron emission from the ZnO H films.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Suppression of the exciton recombination in GaAs0.7Sb0.3/GaAs/GaAs0.7P0.3 coupled quantum well (CQW) induced by an external magnetic field is investigated theoretically. Unlike the usual electro-Stark effect, the exciton energy dispersion of an exciton is modified by an external in-plane magnetic field, the ground state of the magnetoexciton shifts from a zero in-plane center of mass (CM) momentum to a finite CM momentum, and the Lorentz force induces the spatial separation of electron and hole. Consequently, this effect renders the ground state of magnetoexciton stable against radiative recombination due to momentum conservation. This effect depends sensitively on the thickness and height of GaAs0.7Sb0.3 layer, therefore it could provide us useful infometion about the band alignment of CQW. (C) 2004 American Institute of Physics.