175 resultados para Mid-infrared lasers
Resumo:
在分析激光晶体的研究现状的基础上,指出其未来应用及主要发展趋势:面向先进制造技术、激光武器等应用的(1μm波段)高功率、大能量激光晶体;面向人眼安全、遥感、光通讯、医疗等应用的红外激光晶体;面向全色显示、光刻等应用的蓝绿紫和可见光激光晶体;LD泵浦超快激光增益和放大介质材料.
Resumo:
We present a new method for detecting near-infrared, mid-infrared, and far-infrared photons with an ultra-high sensitivity. The infrared photon detection was carried out by monitoring the displacement change of a vibrating microcantilever under light pressure using a laser Doppler vibrometer. Ultrathin silicon cantilevers with high sensitivity were produced using micro/nano-fabrication technology. The photon detection system was set up. The response of the microcantilever to the photon illumination is theoretically estimated, and a nanowatt resolution for the infrared photon detection is expected at room temperature with this method.
Resumo:
制备了不同氟化物含量的(1-x)TeO2-AlF3(x=10%,20%,30%,按摩尔计)透明氟碲酸盐玻璃。利用差热分析和Raman光谱对玻璃的性质和结构进行研究。结果显示:当x达到30%时,氟化铝以Al-F多面体的形式进入玻璃网络结构。随着氟化物含量增加,玻璃在中红外区的透过率提高,玻璃结构单元从[Te(O,F)4]三方双锥向[Te(O,F)3]三方锥转变。Raman光谱显示:1个宽的强峰出现在750~840cm^-1,表明玻璃中Te-O键长介于0.185-0.196nm之间。
Resumo:
制备了一种新型的氧卤碲酸盐玻璃:TeO2-Nb2O5-YF3,给出并研究了TeO2-Nb2O5-YF3三元系统的玻璃形成范围。测试了玻璃的密度、折射率、差热(DTA)、拉曼光谱、红外透射光谱以及紫外吸收光谱,通过光谱分析研究了组分含量的变化对玻璃结构及红外透射特性的影响。实验结果表明,TeO2-Nb2O5-YF3玻璃系统具有优良的成玻璃性能和热稳定性等特性,而且在2.8~3.3 μm区域内无明显的[OH]基团吸收,在中红外3~5 μm区域具有优良透射性能,因此在中红外透射方面具有潜在应用价值。
Resumo:
制备了一种新型的氧卤碲酸盐玻璃:(80-x)TeO2—15ZnCl2-xBaO-5NaF(x=30、20、10、0mol%),对玻璃的机械强度、热稳定性、拉曼光谱、紫外吸收光谱、红外透过光谱等特性进行了研究.通过拉曼光谱分析研究了玻璃组分含量的变化对玻璃结构和红外透过性能的影响.结果表明,随着BaO含量的增加,玻璃在红外波段透过率显著增加,并且红外透过截止波长向长波方向移动,本文对这一实验结果进行了机理性的研究探讨.同时,通过在熔制过程中通入高纯O2,以及引入适量的卤化物有效地除去玻璃中的[OH]基团,使
Resumo:
Glasses with compositions 50Bi
Resumo:
The VEGETATION (VGT) sensor in SPOT 4 has four spectral bands that are equivalent to Landsat Thematic Mapper (TM) bands (blue, red, near-infrared and mid-infrared spectral bands) and provides daily images of the global land surface at a 1-km spatial resolution. We propose a new index for identifying and mapping of snow ice cover, namely the Normalized Difference Snow/Ice Index (NDSII), which uses reflectance values of red and mid-infrared spectral bands of Landsat TM and VGT. For Landsat TM data, NDSII is calculated as NDSIITM =(TM3 -TM5)/(TM3 +TM5); for VGT data, NDSII is calculated as NDSIIVGT =(B2- MIR)/(B2 + MIR). As a case study we used a Landsat TM image that covers the eastern part of the Qilian mountain range in the Qinghai-Xizang (Tibetan) plateau of China. NDSIITM gave similar estimates of the area and spatial distribution of snow/ice cover to the Normalized Difference Snow Index (NDSI=(TM2-TM5)/(TM2+TM5)) which has been proposed by Hall et al. The results indicated that the VGT sensor might have the potential for operational monitoring and mapping of snow/ice cover from regional to global scales, when using NDSIIVGT.
Resumo:
A novel scheme to eliminate the artificial background phase jitter is proposed for measuring the carrier-envelope phase drift of tunable infrared femtosecond pulses from an OPA laser. Different from previous methods, a reference spectral interference measurement is performed, which reveals the artificial phase jitter in the measurement process, in addition to the normal f-to-2f interference measurement between the incident laser pulses and it second harmonic. By analyzing the interference fringes, the accurate CEP fluctuation of the incident pulses is obtained. (c) 2008 Optical Society of America
Resumo:
The damage in fused silica and CaF2 crystals induced by wavelength tunable femtosecond lasers is studied. The threshold fluence is observed to increase rapidly with laser wavelength lambda in the region of 250-800 nm, while it is nearly a constant for 800
Resumo:
Transparent Ni2+-doped beta-Ga2O3 glass-ceramics were synthesized. The nanocrystal phase in the glass-ceramics was identified to be beta-Ga2O3 and its size was about 3.6 nm. It was confirmed from the absorption spectra that the ligand environment of Ni2+ ions changed from the trigonal bi-pyramid fivefold sites in the as-cast glass to the octahedral sites in the glass-ceramics. The broadband infrared emission centering at 1270 nm with full width at half maximum (FWHM) of more than 250 nm was observed. The fluorescence lifetime was about 1.1 mu s at room temperature. The observed infrared emission could be attributed to the T-3 (2g) (F-3) -> (3)A (2g) (F-3) transition of octahedral Ni2+ ions. It is suggested that the Ni2+-doped transparent beta-Ga2O3 glass-ceramics with broad bandwidth and long lifetime have a potential as a broadband amplification medium.
Resumo:
Transparent glass-ceramics containing beta-Ga2O3:Ni2+ nanocrystals were synthesized and characterized by X-ray diffraction, transmission electron microscopy, and electron energy loss spectroscopy. Intense broad-band luminescence centering at 1200 nm was observed when the sample was excited by a diode laser at 980 nm. The room-temperature fluorescent lifetime was 665 mu s, which is longer than the Ni2+-doped ZnAl2O4 and LiGa5O8 glass-ceramics and is also comparable to the Ni2+-doped LiGa5O8 single crystal. The intense infrared luminescence with long fluorescent lifetime may be ascribed to the high crystal field hold by Ni2+ and the moderate lattice phonon energy of beta-Ga2O3. The excellent optical properties of this novel material indicate that it might be a promising candidate for broad-band amplifiers and room-temperature tunable lasers.
Resumo:
Er3+/Yb3+-codoped bismuthate glasses for developing potential upconversion lasers have been fabricated and characterized. The optimal Yb3+ doping content was investigated in the glasses with different Yb3+-Er3+ concentration ratios and the optimal Yb3+-Er3+ concentration ratio is 5:1. Under 975 nm excitation, intense green and red emissions centered at 525, 546 and 657 nm, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2) and F-4(9/2) -> I-4(15/2), respectively, were observed at room temperature. The quadratic dependence of the 525, 546 and 657 nm emissions on excitation power indicates that a two-photon absorption process occurs under 975 nm excitation. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Er3+-doped lithium-barium-lead-bismuth glass for developing upconversion lasers has been fabricated and characterized. The Judd-Ofelt intensity parameters Omega(t) (t = 2, 4, 6), calculated based on the experimental absorption spectrum and Judd-Ofelt theory, were found to be Omega(2) = 3.05 x 10(-20) cm(2), Omega(4) = 0.95 x 10(-20) cm(2), and Omega(6) = 0.39 x 10(-20) cm(2). Under 975 nm excitation, intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2), respectively, were observed at room temperature. The upconversion mechanisms are discussed based on the energy matching and quadratic dependence on excitation power, and the dominant mechanisms are excited state absorption and energy transfer upconversion for the green and red emissions. The long-lived I-4(11/2) level is supposed to serve as the intermediate state responsible for the intense upconversion processes. The intense upconversion luminescence of Er3+-doped lithium-barium-lead-bismuth glass may be a potentially useful material for developing upconversion optical devices. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Near-infrared luminescence is observed from bismuth-doped GeS2-Ga2S3 chalcogenide glasses excited by an 808 nm laser diode. The emission peak with a maximum at about 1260 nm is observed in 80GeS(2)-20Ga(2)S(3):0.5Bi glass and it shifts toward the long wavelength with the addition of Bi gradually. The full width of half maximum (FWHM) is about 200 nm. The broadband infrared luminescence of Bi-doped GeS2-Ga2S3 chalcogenide glasses may be predominantly originated from the low valence state of Bi, such as Bi+. Raman scattering is also conducted to clarify the structure of glasses. These Bi-doped GeS2-Ga2S3 chalcogenide glasses can be applied potentially in novel broadband optical fibre amplifiers and broadly tunable laser in optical communication system.
Resumo:
We prepare bismuth-doped borosilicate glasses and the luminescence properties in infrared wavelength region are investigated. Transmission spectrum, fluorescence spectrum and fluorescence decay curve are measured. The glasses exhibit a broad infrared luminescence peaking at 1340nm with the full width at half maximum of about 205nm, and lifetime of 273 mu s when excited by an 808-nm laser diode. The glasses are promising materials for broadband optical amplifiers and tunable lasers.