52 resultados para Maxillary complete denture
Resumo:
In a number of recent studies, we summarized the obvious errors and shortcomings that can be spotted in many (if not most) mitochondrial DNA (mtDNA) data sets published in medical genetics. We have reanalyzed here the complete mtDNA genome data published
Resumo:
The mitochondrial genome complete sequence of Achalinus meiguensis was reported for the first time in the present study. The complete mitochondrial genome of A. meiguensis is 17239 bp in length and contains 13 protein-coding genes, 22 tRNA, 2 rRNA, and 2 non-coding regions (Control regions). On the basis of comparison with the other complete mitochondrial sequences reported, we explored the characteristic of structure and evolution. For example, duplication control regions independently occurred in the evolutionary history of reptiles; the pseudo-tRNA of snakes occurred in the Caenophidia; snake is shorter than other vertebrates in the length of tRNA because of the truncations of T psi C arm (less than 5 bp) and "DHU" arm. The phylogenic analysis by MP and BI analysis showed that the phylogenetic position of A. meiguensis was placed in Caenophidia as a sister group to other advanced snakes with the exclusion of Acrochordus granulatus which was rooted in the Caenophidia. Therefore we suggested that the subfamily Xenodermatinae, which contains A. meiguensis, should be raised to a family rank or higher rank. At the same time, based on the phylogenic statistic test, the tree of Bayesian was used for estimating the divergence time. The results showed that the divergence time between Henophidia and Caenophidia was 109.50 Mya; 106.18 Mya for divergence between Acrochordus granulatus and the other snakes of the Caenophidia; the divergence time of A. meiguensis was 103 Mya, and Viperidae diverged from the unilateral of Elapidae and Colubridae was 96.06 Mya.
Resumo:
The complete genome of spring viraemia of carp virus (SVCV) strain A-1 isolated from cultured common carp (Cyprinus carpio) in China was sequenced and characterized. Reverse transcription-polymerase chain reaction (RT-PCR) derived clones were constructed and the DNA was sequenced. It showed that the entire genome of SVCV A-1 consists of 11,100 nucleotide base pairs, the predicted size of the viral RNA of rhabdoviruses. However, the additional insertions in bp 4633-4676 and bp 4684-4724 of SVCV A-1 were different from the other two published SVCV complete genomes. Five open reading frames (ORFs) of SVCV A-1 were identified and further confirmed by RT-PCR and DNA sequencing of their respective RT-PCR products. The 5 structural proteins encoded by the viral RNA were ordered 3'-N-P-M-G-L-5'. This is the first report of a complete genome sequence of SVCV isolated from cultured carp in China. Phylogenetic analysis indicates that SVCV A-1 is closely related to the members of the genus Vesiculovirus, family Rhabdoviridae.
Resumo:
The complete mitochondrial genome sequence of the Chinese hook snout carp, Opsariichthys bidens, was newly determined using the long and accurate polymerase chain reaction method. The 16,611-nucleotide mitogenome contains 13 protein-coding genes, two rRNA genes (12S, 16S) 22 tRNA genes, and a noncoding control region. We use these data and homologous sequence data from multiple other ostariophysan fishes in a phylogenetic evaluation to test hypothesis pertaining to codon usage pattern of O. bidens mitochondrial protein genes as well as to re-examine the ostariophysan phylogeny. The mitochondrial genome of O. bidens reveals an alternative pattern of vertebrate mitochondrial evolution. For the mitochondrial protein genes of O. bidens, the most frequently used codon generally ends with either A or C, with C preferred over A for most fourfold degenerate codon families; the relative synonymous codon usage of G-ending codons is greatly elevated in all categories. The codon usage pattern of O. bidens mitochondrial protein genes is remarkably different from the general pattern found previously in the relatively closely 9 related zebrafish and most other vertebrate mitochondria. Nucleotide bias at third codon positions is the main cause of codon bias in the mitochondrial protein genes of O. bidens, as it is biased particularly in favor of C over A. Bayesian analysis of 12 concatenated mitochondrial protein sequences for O. bidens and 46 other teleostean taxa supports the monophyly of Cypriniformes and Otophysi and results in a robust estimate of the otophysan phylogeny. (C) 2007 Published by Elsevier B.V.
Resumo:
The complete sequence of the 16,539 nucleotide mitochondrial genome from the single species of the catfish family Cranoglanididae, the helmet catfish Cranoglanis bouderius, was determined using the long and accurate polymerase chain reaction (LA PCR) method. The nucleotide sequences of C. bouderius mitochondrial DNA have been compared with those of three other catfish species in the same order. The contents of the C. bouderius mitochondrial genome are 13 protein-coding genes, two ribosomal RNA and 22 transfer RNA genes, and a non-coding control region, the gene order of which is identical to that observed in most other vertebrates. Phylogenetic analyses for 13 otophysan fishes were performed using Bayesian method based on the concatenated mtDNA protein-coding gene sequence and the individual protein-coding gene sequence data set. The competing otophysan topologies were then tested by using the approximately unbiased test, the Kishino-Hasegawa test, and the Shimodaira-Hasegawa test. The results show that the grouping ((((Characifonnes, Gymnotiformes), Siluriformes), Cyprinifionnes), outgroup) is the most likely but there is no significant difference between this one and the other alternative hypotheses. In addition, the phylogenetic placement of the family Cranoglanididae among siluriform families was also discussed. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Lymphocystis diseases in fish throughout the world have been extensively described. Here we report the complete genome sequence of lymphocystis disease virus isolated in China (LCDV-C), an LCDV isolated from cultured flounder (Paralichthys olivaceus) with lymphocystis disease in China. The LCDV-C genome is 186,250 bp, with a base composition of 27.25% G+C. Computer-assisted analysis revealed 240 potential open reading frames (ORFs) and 176 nonoverlapping putative viral genes, which encode polypeptides ranging from 40 to 1,193 amino acids. The percent coding density is 67%, and the average length of each ORF is 702 bp. A search of the GenBank database using the 176 individual putative genes revealed 103 homologues to the corresponding ORFs of LCDV-1 and 73 potential genes that were not found in LCDV-1 and other iridoviruses. Among the 73 genes, there are 8 genes that contain conserved domains of cellular genes and 65 novel genes that do not show any significant homology with the sequences in public databases. Although a certain extent of similarity between putative gene products of LCDV-C and corresponding proteins of LCDV-1 was revealed, no colinearity was detected when their ORF arrangements and coding strategies were compared to each other, suggesting that a high degree of genetic rearrangements between them has occurred. And a large number of tandem and overlapping repeated sequences were observed in the LCDV-C genome. The deduced amino acid sequence of the major capsid protein (MCP) presents the highest identity to those of LCDV-1 and other iridoviruses among the LCDV-C gene products. Furthermore, a phylogenetic tree was constructed based on the multiple alignments of nine MCP amino acid sequences. Interestingly, LCDV-C and LCDV-1 were clustered together, but their amino acid identity is much less than that in other clusters. The unexpected levels of divergence between their genomes in size, gene organization, and gene product identity suggest that LCDV-C and LCDV-1 shouldn't belong to a same species and that LCDV-C should be considered a species different from LCDV-1.
Resumo:
Hemorrhagic disease, caused by the grass carp reovirus (GCRV), is one of the major diseases of grass carp in China. Little is known about the structure and function of the gene segments of this reovirus. The S10 genome segment of GCRV was cloned and the complete nucleotide sequence is reported here. The S10 is 909 nucleotides long and contains a large open reading frame (ORF) encoding a protein of 276 amino acids with a deduced molecular weight of approximately 29.7 kDa. Comparisons of the deduced amino acid sequence of GCRV S10 with those of other reoviruses revealed no significant homologies. However, GCRV S10 shared a putative zinc-finger sequence and a similar distribution of hydrophilic motifs with the outer capsid proteins encoded by Coho salmon aquareovirus (SCSV) S10, striped bass reovirus (SBRV) S10, and mammalian reovirus (MRV) S4. It was predicted that this segment gene encodes an outer capsid protein.
Resumo:
In this paper, we proposed a method of classification for viruses' complete genomes based on graph geometrical theory in order to viruses classification. Firstly, a model of triangular geometrical graph was put forward, and then constructed feature-space-samples-graphs for classes of viruses' complete genomes in feature space after feature extraction and normalization. Finally, we studied an algorithm for classification of viruses' complete genomes based on feature-space-samples-graphs. Compared with the BLAST algorithm, experiments prove its efficiency.
Resumo:
Global transposable characteristics in the complete DNA sequence of the Saccharomyces cevevisiae yeast is determined by using the metric representation and recurrence plot methods. On the basis of the correlation distance of nucleotide strings, 16 chromosome sequences of the yeast, which are divided into 5 groups, display 4 kinds of the fundamental transposable characteristics: a short increasing period, a long increasing quasi-period, a long major value and hardly relevant.
Resumo:
The Karman vortex shedding is totally suppressed in flows past a wavy square-section cylinder at a Reynolds number of 100 and the wave steepness of 0.025. Such a phenomenon is illuminated by the numerical simulations. In the present study, the mechanism responsible for it is mainly attributed to the vertical vorticity. The geometric disturbance on the rear surface leads to the appearance of spanwise flow near the base. The specific vertical vorticity is generated on the rear surface and convecting into the near wake. The wake flow is recirculated with the appearance of the pair of recirculating cells. The interaction between the upper and lower shear layers is weakened by such cells, so that the vortex rolls could not be formed and the near wake flow becomes stable.