184 resultados para Layer Thickness
Resumo:
In the present paper, we endeavor to accomplish a diagram, which demarcates the validity ranges for interfacial wave theories in a two-layer system, to meet the needs of design in ocean engineering. On the basis of the available solutions of periodic and solitary waves, we propose a guideline as principle to identify the validity regions of the interfacial wave theories in terms of wave period T, wave height H, upper layer thickness d(1), and lower layer thickness d(2), instead of only one parameter-water depth d as in the water surface wave circumstance. The diagram proposed here happens to be Le Mehautes plot for free surface waves if water depth ratio r = d(1)/d(2) approaches to infinity and the upper layer water density rho(1) to zero. On the contrary, the diagram for water surface waves can be used for two-layer interfacial waves if gravity acceleration g in it is replaced by the reduced gravity defined in this study under the condition of sigma = (rho(2) - rho(1))/rho(2) -> 1.0 and r > 1.0. In the end, several figures of the validity ranges for various interfacial wave theories in the two-layer fluid are given and compared with the results for surface waves.
Resumo:
The convective instabilities in two or more superposed layers heated from below were studied extensively by many scientists due to several interfacial phenomena in nature and crystal growth application. Most works of them were performed mainly on the instability behaviors induced only by buoyancy force, especially on the oscillatory behavior at onset of convection (see Gershuni et. Al.(1982), Renardy et. Al. (1985,2000), Rasenat et. Al. (1989), and Colinet et. Al.(1994)) . But the unstable situations of multi-layer liquid convection will become more complicated and interesting while considering at the same time the buoyancy effect combined with thermocapillary effect. This is the case in the gravity reduced field or thin liquid layer where the thermocapillary effect is as important as buoyancy effect. The objective of this study was to investigate theoretically the interaction between Rayleigh-Bénard instability and pure Marangoni instability in a two-layer system, and more attention focus on the oscillatory instability both at the onset of convection and with increasing supercriticality. Oscillatory behavious of Rayleigh-Marangoni-Bénard convective instability (R-M-B instability) and flow patterns are presented in the two-layer system of Silicon Oil (10cSt) over Fluorinert (FC70) for a larger various range of two-layer depth ratios (Hr=Hupper/Hdown) from 0.2 to 5.0. Both linear instability analysis and 2D numerical simulation (A=L/H=10) show that the instability of the system depends strongly on the depth ratio of two-layer liquids. The oscillatory instability regime at the onset of R-M-B convection are found theoretically in different regions of layer thickness ratio for different two-layer depth H=12,6,4,3mm. The neutral stability curve of the system displaces to right while we consider the Marangoni effect at the interface in comparison with the Rayleigh-Bénard instability of the system without the Marangoni effect (Ma=0). The numerical results show different regimes of the developing of convection in the two-layer system for different thickness ratios and some differences at the onset of pure Marangoni convection and the onset of Rayleigh-Bénard convections in two-layer liquids. Both traveling wave and standing wave were detected in the oscillatory instability regime due to the competition between Rayleigh-Bénard instability and Marangoni effect. The mechanism of the standing wave formation in the system is presented numerically in this paper. The oscillating standing wave results in the competition of the intermediate Marangoni cell and the Rayleigh convective rolls. In the two-layer system of 47v2 silicone oil over water, a transition form the steady instability to the oscillatory instability of the Rayleigh-Marangoni-Bénard Convection was found numerically above the onset of convection for ε=0.9 and Hr=0.5. We propose that this oscillatory mechanism is possible to explain the experimental observation of Degen et. Al.(1998). Experimental work in comparison with our theoretical findings on the two-layer Rayleigh-Marangoni-Bénard convection with thinner depth for H<6mm will be carried out in the near future, and more attention will be paid to new oscillatory instability regimes possible in the influence of thermocapillary effects on the competition of two-layer liquids
Resumo:
Some results of an investigation on the layer thickness uniformity of glancing angle deposition are presented. A zirconia monolayer has been deposited by glancing angle deposition to analyze the layer thickness uniformity. The experimental results indicate that the thickness variation over the substrate is less than 0. 1%, which is considered as good uniformity. It is found that the non-uniformity of experimental results is larger than that of the theoretical results. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Microsquare resonators laterally confined by SiO2/Au/air multilayer structure are investigated by light ray method with reflection phase-shift of the multiple layers and two-dimensional (2-D) finite-difference time-domain (FDTD) technique. The reflectivity and phase shift of the mode light ray on the sides of the square resonator with the semiconductor/SiO2/Au/air multilayer structure are calculated for TE and TM modes by transfer matrix method. Based on the reflection phase shift and the reflectivity, the mode wavelength and factor are calculated by the resonant condition and the mirror loss, which are in agreement well with that obtained by the FDTD simulation. We find that the mode factor increases greatly with the increase of the SiO2 layer thickness, especially as d < 0.3 mu m. For the square resonator with side length 2 mu m and refractive index 3.2, anticrossing mode couplings are found for confined TE modes at wavelength about 1.6 mu m at d = 0.11 mu m, and confined TM modes at d = 0.71 mu m, respectively.
Resumo:
InGaN/GaN multiquantum-well (MQW) structures grown by metalorganic chemical-vapor deposition on n-type GaN and capped by p-type GaN were investigated by cross-sectional transmission electron microscopy, double crystal x-ray diffraction, and temperature-dependent photoluminescence. For the sample with strained-layer thicknesses greater than the critical thicknesses, a high density of pure edge type threading dislocations generated from MQW layers and extended to the cap layer was observed. These dislocations result from a relaxation of the strained layers when their thicknesses are beyond the critical thicknesses. Because of indium outdiffusion from the well layers due to the anneal effect of Mg-doped cap layer growth and defects generated from strain relaxation, the PL emission peak was almost depressed by the broad yellow band with an intensity maximum at 2.28 eV. But for the sample with strained-layer thicknesses less than the critical thicknesses, it has no such phenomenon. The measured critical thicknesses are consistent with the calculated values using the model proposed by Fischer, Kuhne, and Richter. (C) 2004 American Institute of Physics.
Resumo:
We describe the growth of GaN on Si (111) substrates with a AlGaN/AlN buffer layer by NH3-GSMBE. The influence of the AlN and AlGaN buffer layer thickness on the crack density of GaN has been investigated. It is found that the optimum thickness is 120 nm and 250 nm for AlN and AlGaN layers, respectively. The full width at half maximum of the GaN (0002) peak in the triple-crystal x-ray rocking curve measurement is about 15 arcmin.
Resumo:
We describe the growth of GaN on Si(111) substrates with AlxGa1-xN/AlN buffer layer by ammonia gas source molecular beam epitaxy (NH3-GSMBE). The influence of the AlN and AlxGa1-xN buffer layer thickness and the Al composition on the crack density of GaN has been investigated. It is found that the optimum thickness is 120 and 250 nm for AlN and AlxGa1-xN layers, respectively. The optimum Al composition is between 0.3 < x < 0.6. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In-x Ga1-xN/GaN multiple quantum well (MQW) samples with strain-layer thickness lager/less than the critical one are investigated by temperature-dependent photoluminescence and transmission electron microscopy, and double crystal x-ray diffraction. For the sample with the strained-layer thickness greater than the critical thickness, we observe a high density of threading dislocations generated at the MQW layers and extended to the cap layer. These dislocations result from relaxation of the strain layer when its thickness is beyond the critical thickness. For the sample with the strained-layer thickness greater than the critical thickness, temperature-dependent photoluminescence measurements give evidence that dislocations generated from the MQW layers due to strain relaxation are main reason of the poor photoluminescence property, and the dominating status change of the main peak with increasing temperature is attributed to the change of the radiative recombination from the areas including dislocations to the ones excluding dislocations.
Resumo:
To fabricate nitride-based ultraviolet optoelectronic devices, a deposition process for high-Al-composition AlGaN (Al content > 50%) films with reduced dislocation densities must be developed. This paper describes the growth of high-Al-composition AlGaN film on (0001) sapphire via a LT AIN nucleation layer by low pressure metalorganic chemical vapor deposition (LPMOCVD). The influence of the low temperature AIN buffer layer thickness on the high-Al-content AlGaN epilayer is investigated by triple-axis X-ray diffraction (TAXRD), scanning electron microscopy (SEM), and optical transmittance. The results show that the buffer thickness is a key parameter that affects the quality of the AlGaN epilayer. An appropriate thickness results in the best structural properties and surface morphology. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
This paper studies the exciton-longitudinal-optical-phonon coupling in InGaN/GaN single quantum wells with various cap layer thicknesses by low temperature photoluminescence (PL) measurements With increasing cap layer thickness, the PL peak energy shifts to lower energy and the coupling strength between the exciton and longitudinal-optical (LO) phonon, described by Huang-Rhys factor, increases remarkably due to an enhancement of the internal electric field With increasing excitation intensity, the zero-phonon peak shows a blueshift and the Huang-Rhys factor decreases These results reveal that there is a large built-in electric field in the well layer and the exciton-LO phonon coupling is strongly affected by the thickness of the cap layer
Resumo:
Based on the n(x, lambda), the calculation of the reflection spectrum for vertical cavity surface emitting lasers shows that the deviation of the central wavelength caused by the change of layer thickness is much more than that caused by the change of AlAs mole fractions. Therefore the control of the MBE growth rate is very important.
Resumo:
The Raman spectra of the II-VI wide band-gap compound ZnSe-ZnTe semiconductor strained-layer superlattices have been studied. The relations between the Raman shifts of the longitudinal optical phonon modes and the superlattice-structure parameters have been determined. When the layer thickness exceeds 40 angstrom, the change of the LO phonon-mode frequency shifts with the layer thickness is minimal, whereas when the layer thickness is smaller than 40 angstrom, great shifts have been observed. We estimate that the critical thickness of ZnSe-ZnTe SLS is about 40 angstrom. We have also found that the shifts induced by strain are much larger than the red shifts due to confinement.
Resumo:
We present studies of alloy composition and layer thickness dependences of excitonic linewidths in InGaAs/GaAs strained-layer quantum wells grown by MBE, using both photoluminescence and optical absorption. It is observed that linewidths of exciton spectra increase with indium content and well size. Using the virtual crystal approximation, the experimental data are analyzed. The results obtained show that the alloy disorder is the dominant mechanism for line broadening at low temperature. In addition, it is found that the absorption spectra related to light hole transitions have varied from a peak to a step-like structure as temperature increases. This behavior can be understood by the indirect space transitions of light holes.
Resumo:
Quantum well disordering of GaAs/AlGaAs multiple quantum well(MQW) has been accomplished with only plasma enhanced chemical vapor deposited (PECVD) SiN cap layer growth. The amount of blue shift increases with SiN growing time. This result has been explained by the vacancy indiffusion during PECVD SiN growth. Rapid thermal annealing (RTA) of the sample after SiN cap layer growth at 850 degrees C for 35 s caused a larger amount of blue shift than those obtained without RTA. By considering the model of Al diffusion from AlGaAs barrier into GaAs QWs together with the result from photoluminescence (PL) measurement, Al diffusion coefficients were calculated. The Al diffusion coefficient due to PECVD SiN was estimated at about 3 x10(-17) cm(2)/s. It was possible to extract the effect of RTA on the QW disordering, which showed that the amount of the blue shift and the Al diffusion coefficient due only to RTA increases with SiN cap layer thickness as reported by Chi et al.(10))
Resumo:
25%Al-Zn alloy coating performs better than hot dip galvanized coating and 55%Al-Zn-Si coating with regard to general seawater corrosion protection. This study deals with the interfacial intermetallic layer's growth, which affects considerably the corrosion resistance and mechanical properties of 25%Al-Zn alloy coatings, by means of three-factor quadratic regressive orthogonal experiments, The regression equation shows that the intermetallic layer thickness decreases rapidly with increasing content of Si added to the Zn-Al alloy bath, increases with rise in bath temperature and prolonging dip time. The most effective factor that determined the thickness of intermetallic layer was the amount of Si added to Zn-Al alloy bath, while the effect of bath temperature and dip time on the thickness of intermetallic layer were not very obvious.