57 resultados para Lakes--Lake Crawford.
Resumo:
This Study was conducted in Lake Dongtinghu, a large river-connected lake on the Yangtze River flood-plain, China. Our goal was to determine trophic relationships among benthic macroinvertebrates, as well as the effects of flood disturbance on the benthic food web of a river-connected lake. Macroinvertebrates in the lake fed mainly on detritus and plankton (both zooplankton and phytoplankton). Food web Structure in Lake Dongtinghu was characterized by molluscs as the dominant group, low connectance, high level of omnivory. based oil detritus and primary production, and most ingestion concentrating on a few links. Our analyses showed that flood disturbance is an important factor affecting the benthic food web in Lake Dongtinghu. The numbers of species and functional feeding groups (FFGs), and the density and biomass of macroinvertebrates decreased significantly during flooding. Connectance was higher during the flood season than in other seasons, indicating that floods have a strong effect on connectance in this Yangtze River-connected lake. Flood effects on the benthic web were also evident in the decrease of niche overlaps within and anion, FFGs. Our results provide useful information regarding biodiversity conservation on the Yangtze floodplain. Reconstructing and maintaining natural and regular flow regimes between Yangtze lakes and the river is essential for restoration of macroinvertebrates on the floodplain.
Resumo:
During 28-29, September 2005, water was drawn from Hanjiang River and Houguan Lake to the Yangzi River via Sanjiao Lake and Nantaizi Lake in Wuhan in order to provide favorable conditions for ecosystem restoration. To evaluate the feasibility and validity of drawing water as a means of ecosystem restoration, zooplankton populations were studied 3 times (before, immediately after finishing and a month after drawing water) at seven locations from 27 Sept. 2005 to 2 Nov. 2005. Water quality in the lakes was mostly improved and zooplankton species richness decreased as soon as drawing water had finished but increased a month after drawing water. Zooplankton density and biomass was reduced in the lakes by drawing water but was increased at the entrance to Sanjiao Lake because of landform geometry change. Before drawing water, most species in Sanjiao Lake e.g., Brachionus sp. and Keratella sp. were tolerant of contamination. After drawing water oligotrophic-prone species such as Lecane ludwigii and Gastropus stylifer emerged. We conclude that drawing water could be important for improving water quality and favour ecosystem restoration. Dilution of nutrient concentrations may be an important role in the effect.
Resumo:
1. In previous work, phytoplankton regulation in freshwater lakes has been associated with many factors. Among these, the ratio of total nitrogen to total phosphorus (TN : TP) has been widely proposed as an index to identify whether phytoplankton are N- or P-limited. From another point of view, it has been suggested that planktivorous fish can be used to control phytoplankton. 2. Large-scale investigations of phytoplankton biomass [measured as chlorophyll a, (chl-a)] were carried out in 45 mid-lower Yangtze shallow lakes to test hypotheses concerning nutrient limitation (assessed with TN : TP ratios) and phytoplankton control by planktivorous fish. 3. Regression analyses indicated that TP was the primary regulating factor and TN the second regulating factor for both annual and summer phytoplankton chl-a. In separate nutrient-chl-a regression analyses for lakes of different TN : TP ratios, TP was also superior to TN in predicting chl-a at all particular TN : TP ranges and over the entire TN : TP spectrum. Further analyses found that chl-a : TP was not influenced by TN : TP, while chl-a : TN was positively and highly correlated to TP : TN. 4. Based on these results, and others in the literature, we argue that the TN : TP ratio is inappropriate as an index to identify limiting nutrients. It is almost impossible to specify a 'cut-off' TN : TP ratio to identify a limiting nutrient for a multi-species community because optimal N : P ratios vary greatly among phytoplankton species. 5. Lakes with yields of planktivorous fish (silver and bighead carp, the species native to China) > 100 kg ha(-1) had significantly higher chl-a and lower Secchi depth than those with yields < 100 kg ha(-1). TP-chl-a and TP-Secchi depth relationships are not significantly different between lakes with yields > 100 kg ha(-1) or < 100 kg ha(-1). These results indicate that the fish failed to decrease chl-a yield or enhance Z(SD). Therefore, silver carp and bighead carp are not recommended as a biotic agent for phytoplankton control in lake management if the goal is to control the entire phytoplankton and to enhance water quality.
Resumo:
In this study, the levels of 25 semi-volatile organic compounds (SVOCs) were measured in samples of water, suspended particulate matter (SPM) and sediment from two urban lakes in Wuhan, China. The total concentrations of 25 SVOCs varied from 529.4 to 2168.9 ng/L, 120.7 to 22543.7 ng/g dry weight and 1577.3 to 61579.6 ng/g dry wt. in water, SPM and sediment, respectively. The concentration of SVOCs in SPM was 9-10 times higher than that in water, and the concentration of SVOCs in sediment 1.5-2 times higher than that in SPM. The level of total SVOC25 in the samples from Moshuihu Lake was higher than that in Yuehu Lake. Among the 25 SVOCs, phthalate compounds were on the highest level in all observed samples ranging between 441.9-1831.2 ng/L, 116.3-17566.8 ng/g, dry wt. and 6432.8-48177.6 ng/g dry wt. in water, SPM and sediment, respectively. Bis(2-ethylhexyl)phthalate, the predominant component of the analyzed pollutants, was in the range from 246.7 to 537.5 ng/l, 51.2 to 15540.0 ng/g dry wt. and 468.2 to 45010.3 ng/g dry wt. in water, SPM and sediment, respectively. The content of PAHs, dinitrotoluene and isophoton in sediment was higher than that in water and SPM at most of the locations. The possible sources of the pollutants and their inter-relation with human activities were discussed.
Resumo:
Although studies on carbon burial in lake sediments have shown that lakes are disproportionately important carbon sinks, many studies on gaseous carbon exchange across the water-air interface have demonstrated that lakes are supersaturated with CO2 and CH4 causing a net release of CO2 and CH4 to the atmosphere. In order to more accurately estimate the net carbon source/sink function of lake ecosystems, a more comprehensive carbon budget is needed, especially for gaseous carbon exchange across the water-air interface. Using two methods, overall mass balance and gas exchange and carbon burial balance, we assessed the carbon source/sink function of Lake Donghu, a subtropical, eutrophic take, from April 2003 to March 2004. With the overall mass balance calculations, total carbon input was 14 905 t, total carbon output was 4950 1, and net carbon budget was +9955 t, suggesting that Lake Donghu was a great carbon sink. For the gas exchange and carbon burial balance, gaseous carbon (CO2 and CH4) emission across the water-air interface totaled 752 t while carbon burial in the lake sediment was 9477 t. The ratio of carbon emission into the atmosphere to carbon burial into the sediment was only 0.08. This low ratio indicates that Lake Donghu is a great carbon sink. Results showed good agreement between the two methods with both showing Lake Donghu to be a great carbon sink. This results from the high primary production of Lake Donghu, substantive allochthonous carbon inputs and intensive anthropogenic activity. Gaseous carbon emission accounted for about 15% of the total carbon output, indicating that the total output would be underestimated without including gaseous carbon exchange. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis), a protected endangered species, is the sole freshwater subspecies of finless porpoise, living only in the middle and lower reaches of the Yangtze River, China, and its appended lakes. Its population has decreased sharply to 1,400 because of human activities, including environmental contamination. In the present study, polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were determined in the blubber, liver, kidney, stomach, small intestine, and brains of five individual Yangtze finless porpoises collected from 1998 to 2004. The results showed PCB concentrations ranged from 0.06 to 1.89 mu g/g lipid weight in the organs and consisted mainly of penta-, hexa-. and decachlorinated biphenyls. The PBDE concentrations were between 5.32 and 72.76 ng/g lipid weight. Tetra-, penta-, and hexabrominated diphenyl ethers were the major homologues. The PCDD/F concentrations ranged from 65 to 1,563 pg/g lipid weight, and their predominant homologues were penta- and hexachlorinated dibenzofurans and hepta- and octachlorinated dibenzo-p-dioxins. The hazard quotients (HQs) based on toxic equivalency were determined to be greater than one in all individuals for PCBs, for PCDD/Fs, and for PCBs and PCDD/Fs In addition, HQs would be higher if PBDEs were included. The results suggest that reduction of environmental contamination may contribute greatly to protecting this highly endangered species.
Resumo:
Blooms of cyanobacteria, or blue-greens, are known to produce chemicals, such as microcystins, which can be toxic to aquatic and terrestrial organisms. Although previous studies have examined the fate of microcystins in freshwater lakes, primary elimination pathways and factors affecting degradation and loss have not been fully explained. The goal of the present study was to explore sources of algal toxins and investigate the distribution and biodegradation of microcystins in water and sediment through laboratory and field analyses. Water and sediment samples were collected monthly from several locations in Lake Taihu from February 2005 to January 2006. Samples were analyzed for the presence of microcystin. Water and sediment were also used in laboratory studies to determine microcystin degradation rates by spiking environmental samples with known concentrations of the chemical and observing concentration changes over time. Some water samples were found to efficiently degrade microcystins. Microcystin concentrations dropped faster in water collected immediately above lake sediment (overlying water). Degradation in sediments was higher than in water. Based on spatial distribution analyses of microcystin in Lake Taihu, higher concentrations (relative to water concentrations) of the chemical were found in lake sediments. These data suggest that sediments play a critical role in microcystin degradation in aquatic systems. The relatively low levels of microcystins found in the environment are most likely due to bacterial biodegradation. Sediments play a crucial role as a source (to the water column) of bio-degrading bacteria and as a carbon-rich environment for bacteria to proliferate and metabolize microcystin and other biogenic toxins produced by cyanobacteria. These, and other, data provide important information that may be applied to management strategies for improvement of water quality in lakes, reservoirs and other water bodies. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Investigations of protozoa were carried out during four surveys of East Dongting Lake, China. A total of 160 protozoan species belonging to 71 genera was identified, of which 53 were flagellates, 37 sarcodines, and 70 ciliates. Among them, Peritrichida (32.6% of frequency), Arcellinida (16.2%), Volvocales (13.61/6), Peridiniales (13.1%), and Chrysomonadales (9.1%) were the main groups and contributed to 84.5% of the overall species. Ciliates were mainly composed of sessile species and small species. The total protozoan abundance varied from 2,400 cells L-1 to 20,250 cells L-1. The highest protozoan abundance occurred in spring; the lowest number was in autumn. The highest abundance of ciliates occurred in spring and winter, whereas flagellates developed the highest abundance in,summer and autumn. Pearson correlation analysis and linear regressions indicated that chlorophyll a and water velocity were the main factors affecting ternporal and spatial variations of the protozoan abundance.
Resumo:
A comparative limnological study was carried out to present a snapshot of crustacean zooplankton communities and their relations to environmental factors to test whether there is a consistent relationship between crustacean biomass and trophic indicators among lake groups with similar trophic conditions. The study lakes showed a wide range of trophic status, with total phosphorus (TP) ranging from 0.008 to 1.448mgL(-1), and chlorophyll a from 0.7 to 146.1 mu g L-1, respectively. About 38 species of Crustacea were found, of which Cladocera were represented by 25 taxa (20 genera), and Copepoda by 13 taxa (I I genera). The most common and dominant species were Bosmina coregoni, Moina micrura, Diaphanosoma brachyurum, Cyclops vicinus, Thermocyclops taihokuensis, Mesocyclops notius and Sinocalanus dorrii. Daphnia was rare in abundance. Canonical correspondence analysis showed that except for four species (D. hyalina, S. dorrii, C. vicinus and M. micrura), almost all the dominant species had the same preference for environmental factors. Temperature, predatory cyclopoids and planktivorous fishes seem to be the key factors determining species distribution. TP was a relatively better trophic indicator than chlorophyll a to predict crustacean biomass. Within the three groups of lakes, however, there was no consistent relationship between crustacean biomass and trophic indicators. The possible reason might be that top-down and bottom-up control on crustaceans vary with lake trophic state. The lack of significant negative correlation between crustacean biomass and chlorophyll a suggests that there was little control of phytoplankton biomass by macrozooplankton in these shallow subtropical lakes. (c) 2007 Elsevier GmbH. All rights reserved.
Resumo:
Lake Dianchi is one of the most extensively impacted freshwater lakes by algal blooms. To investigate the response of dominant algal genera, neural networks were applied to model the relationship between water quality parameters and the biomass of four dominant genera (Microcystic spp., Anabaena sp., Quadricauda (Turp.) Breb, Pediastrum Mey) in Dianchi. Results showed that the timing and magnitude of algal blooms of Microcystic spp., nabaena sp., Quadricauda (Turp.) Breb, and Pediastrum Mey in Dianchi could be successfully predicted. The evaluation of environmental factors showed that pH had more significant impact on concentrations of all the four dominant algal genera than the nutrient factors, such as total phosphorus and total nitrogen.
Resumo:
1. We studied driving forces shaping phytoplankton assemblages in two subtropical plateau lakes with contrasting trophic status, the oligotrophic deep Lake Fuxian and the eutrophic shallow Lake Xingyun. 2. Phytoplankton samples were taken monthly for a year and phytoplankton species were sorted into the main taxonomic groups and associations proposed by Reynolds. A canonical correspondence analysis (CCA) was used to test the occurrence of these classification schemes and to determine their discriminatory power. 3. The results suggest that the major driving forces in Lake Fuxian were physical variables, and particularly the underwater light climate, whereas, nutrients were the important driving force in Lake Xingyun. 4. Top-down control through zooplankton grazing in Lake Fuxian was hardly ever a significant determinant itself, because of the scarcity of zooplankton and their low grazing efficiency of predation while a dominance of inedible cyanobacteria throughout the year rendered top-down controls ineffective failing in Lake Xingyun. Hence phytoplankton communities in both lakes appear to be regulated primarily by bottom-up controls.
Resumo:
A total of 30 shallow lakes, located along the middle and lower reaches of the Yangtze River, were studied to assess the relative importance of nutrients and zooplankton biomass in determining the phytoplankton biomass in subtropical China. Zooplankton biomass and nutrients both varied greatly in these lakes. Factor analysis and multiple linear regression showed that phytoplankton biomass was positively correlated with TN, NH4+, NO3- and TP, while it did not show any negative relationship to zooplankton biomass. Meanwhile, the phytoplankton biomass showed contrary relationships to the mass ratio of TN/TP in spring and summer, suggesting that in nutrient-richer lakes the dominant phytoplankton species have different preferences for TN/TP ratio. The insignificant top-down control of phytoplankton biomass may be attributed to the dominance of small-sized crustaceans and low crustacean biomass resulting from cyanobacterial dominance and planktivorous fish predation as well as other factors. Thus, it is likely that nutrients were more important than zooplankton biomass in explaining the total variance of phytoplaDkton biomass in these subtropical lakes.
Resumo:
Many experimental studies have documented the impact of microcystins (MC) on fish based on either intraperitoneal injection, or oral gavaging via the diet, but few experiments were conducted by MC exposure through natural food uptake in lakes. In this study, the phytoplanktivorous silver carp were stocked in a large pen set in Meiliang Bay of Taihu Lake where toxic Microcystis blooms occurred in the warm seasons. Fish samples were collected monthly and MC concentrations in liver and kidney of the fish were determined by LC-MS. The maximum MC concentrations in liver and kidney were present in July when damages in ultrastructures of the liver and kidney were revealed by electron microscope. In comparison with previous studies on common carp, silver carp showed less damage and presence of lysosome proliferation in liver and kidney. Silver carp might eliminate or lessen cell damage caused by MC through lysosome activation. Recovery in the ultrastructures of liver and kidney after Microcystis blooms was companied with a significant decrease or even disappearance of MC. Catalase and glutathione S-transferase in liver and kidney of silver carp during Microcystis blooms were significantly higher than before and after Microcystis blooms. The high glutathione pool in liver and kidney of silver carp suggests their high resistance to MC exposure. The efficient antioxidant defence may be an important mechanism of phytoplanktivorous fish like silver carp to counteract toxic Microcystis blooms. (C) 2007 Published by Elsevier Ltd.
Resumo:
Poyang Lake (Poyang Hu) is located at the junction of the middle and lower reaches of the Yangtze (Changjiang) River, covering an area of 3283 km(2). As one of the few lakes that are still freely connected with the river, it plays an important role in the maintenance of the unique biota of the Yangtze floodplain ecosystem. To promote the conservation of Poyang Lake, an investigation of the macrobenthos in the lake itself and adjoining Yangtze mainstream was conducted in 1997-1999. Altogether 58 benthic taxa, including, 22 annelids, 8 mollusks, 26 arthropods, and 2 miscellaneous animals, were identified from quantitative samples. The benthic fauna shows a high diversity and a marine affinity. The standing crops of benthos in the lake were much higher than those in the river, being 659 individuals/m(2) and 187.3g/m(2) (wet mass) in the main lake, and 549 individuals/m(2) and 116.6 g/m(2) in the lake outlet, but only 129 individuals/m(2) and 0.4g/m(2) in the river. The dominant roup in the lake was Mollusca, comprising 63.4% of the total in density and 99.5% in biomass. An analysis of the functional feeding structure indicated that collector-filterers and scrapers were predominant in the lake, up to 42.2% and 24.7% in density and 70.2% and 29.2% in biomass, respectively, while shredders and collector-gatherers were relatively common in the river. The present study was restricted to the northern outlet and the northeast part of Poyang Lake. A scrutiny is required for the remaining areas.
Resumo:
The paper studied two estrogenic pollutants, 4-nonylphenol (NP) and 4-tert-octylphenol (OP) in water, suspended particle (SP) and sediments in urban eutrophic lakes. The concentrations of NP ranged from 1.94 to 32.85 mu g/l, 0.876 to 31.13 mu g/l and 3.54 to 32.43 mu g/g dry weight (dw) in water, suspended particle (SP) and sediments, respectively, and that of OP from 0.027 to 1.44 mu g/l, 0.008 to 1.777 mu g/l and 0.058 to 1.245 mu g/g dw in water, suspended particle (SP) and sediments, respectively. An increasing trend in the concentration was noticed in all matrices close to the sewage inlets, which was found to be the major factor affecting the spatial distribution of alkylphenols (APs) in the lakes. Due to restoration of submerged macrophytes, which might accumulate APs, the contaminations of APs in the Little Moon Lake (LML) and the Little Lotus Lake (LLL) were lower than those in the Big, Moon Lake (BML) and the Bier Lotus Lake (BLL). A reasonable correlation of NP and OP was obtained among water, suspended particle and sediment. The possible environmental stress of APs concentration on aquatic organisms in Wuhan urban lakes was also discussed.