61 resultados para Lactuca sativa L


Relevância:

100.00% 100.00%

Publicador:

Resumo:

本文介绍了燕麦(Avena sativa L.)的植物学特性、种植区域及营养价值,并对开发燕麦保健食品进行了探讨.燕麦中含有8种人体必需的氨基酸,各种氨基酸含量不仅很高,而且比较平衡;亚油酸含量占脂肪含量的38.1%~52.0%,磷、铁、维生素B2含量也比较丰富,还含有独有的皂甙素.燕麦中的可溶性纤维β-糊精具有降低血脂、保护肠胃、降低血糖的特殊功效.因此,燕麦作为保健食品有广阔的开发利用前景.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

随着现代工业的发展,重金属污染日趋严重。重金属污染引发的环境和健康问题在许多国家都有报道,我国的重金属污染状况也不容乐观。土壤和水体中的重金属污染可以通过食物链进入人体,对人类健康造成很大的危害,如诱发癌症 和畸胎等。 植物修复是一种利用植物对重金属或有机污染物的超富集能力清除或减低污染的环境生物技术。植物修复的生物学机制的研究为这项技术走向实用化奠定了基础。植物修复近期的进展可能来自于可更有效地富集重金属的植物品种的选择、土壤条件的改善等;但长远看来,植物修复技术的巨大进步将取决于新的可更好地抵抗重金属或降解有机毒物的基因的鉴定和克隆,并通过转基因技术创造一批新的植物品种,如可迅速大量富集重金属的高生物量的用作环境净化的植物,以及可排拒重金属吸收的粮食、蔬菜和水果等作物。 本研究针对砷污染的植物修复机制,以超富集砷的凤尾蕨属植物——蜈蚣草为试材取得了如下进展: 1. 以从砷污染地区采集的蜈蚣草(Pteris vittataL.)为植物材料,利用抑制消减杂交(SSH)分离了经砷诱导处理与其对照间表达有差异的cDNA片段,以期得到与砷富集密切相关的基因。其中筛选到的一个cDNA片段与ABC transporter (ATP-binding cassette transporter)有较高的同源性。通过RACE方法对该基因进行了克隆,并进行了初步的结构和功能分析。结果表明所获得的PvABCTl (Accession No. AY496966)为一全长cDNA,长度为2165 bp,其中开读框架为1791 bp,编码597个氨基酸。该基因所编码的蛋白中含有2个ABC transporter特性结构域,1个ATP-binding cassette和2个ATP/GTP结合位点(P-loop),没有明显的跨膜区。 2. 对蜈蚣草在砷胁迫下PvABCT1基因的表达模式进行了研究。转录水平分析表明PvABCT1的表达受砷的诱导。进一步通过PvABCTl-GFP融合基因在洋葱细胞中的表达进行亚细胞定位,结果显示该基因可能定位于细胞质中。 3. 为了研究所克隆的PvABCT1基因的功能,本研究构建了PvABCT1的酵母表达载体,把该基因转入因ACR3基因缺失而对砷敏感的酵母突变株。酵母功能互补实验表明PvABCT1不仅不能与ACR3基因功能互补,反而使酵母对砷的敏感性增加,同时酵母细胞中的砷含量较未转化的酵母细胞增加。即在转入PvABCT1后,酵母细胞吸收了更多的砷。这暗示该基因与蜈蚣草中砷的高吸收有关。 针对食品重金属污染问题,本研究探讨了减低蔬菜对重金属吸收的方法及其 作用机理,取得了如下进展: 1.研究了钙离子和镧离子对镉离子胁迫下生菜种子萌发和植株生长的影响,结果表明在种子萌发时外施4 mM CaCI2或0.04 mg/L La(N03)3均可提高生菜对重金属镉的抗性。 2.通过检测0.5 mM CdCl2胁迫下生菜植株中的镉含量以及外施钙离子或镧离子后相应的镉含量,发现4 mM CaCl2可以增加镉胁迫下生菜植株中镉的积累;而0.04 mg/L La(N03)3可以降低镉胁迫下生菜植株中镉的积累。 3.对生菜中植物络合素合酶基因进行了克隆,通过RT-PCR分析以及植物络合素( phytochelatins,PCs)的检测,探讨了外施钙离子或镧离子对镉胁迫下生菜植株中植物络合素合酶基因在转录水平的表达量、植物络合素含量以及镉的积累三者之间的关系。结果表明:4 mM CaCl2可以提高镉胁迫下生菜植株中植物络合素合酶基因在转录水平的表达以及植物络合素的含量,增加镉的积累;而0.04 mg/L La(N03)3虽然同样可以提高植物络合素合酶基因在转录水平的表达以及植物络合素的含量,却能降低镉胁迫下生菜植株中镉的积累。这暗示外施钙离子可以促进用于重金属污染环境修复的植物对重金属的吸收,而外施镧离子可以用于降低叶菜类蔬菜中重金属镉的积累。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

稻属Oryza隶属禾本科Poaceae,包括20多个野生种和2个栽培种(亚洲栽培稻O. sativa L和非洲栽培稻O. glaberrima Steud) ,广泛分布于全球热带和亚热带。稻属物种可划分为10个基因组(又称染色体组)类型:A, B, C, BC, CD, E, F, G, HJ 和 HK。栽培稻所属的A基因组是稻属中物种数目最多、地理分布最广的基因组类型,由8个种组成。由于栽培稻属于A基因组,故A基因组物种是栽培稻遗传改良的巨大基因源。数十年来,国际上许多学者对A基因组类群开展了大量涉及形态、细胞、同工酶和分子标记方面的研究,但由于A基因组物种间遗传关系十分接近,形态上差异小且地理分布重叠,使得A基因组物种的系统发育、物种起源和生物地理学等方面存在诸多悬而未决的问题,是稻属中分类和鉴定困难较多的类群。本文利用核基因内含子序列,结合转座子插入分析,重建了A基因组的系统发育,估测了各类群的分化时间;与此同时,基于多克隆测序和基因谱系分析,探讨了O. rufipogon和O. nivara遗传关系以及亚洲栽培稻起源。主要研究结果如下: 1. A基因组的系统发育 在水稻全基因组数据库搜索的基础上,测定了4个单拷贝核基因(Adh1 及3个未注释基因)的内含子序列,构建了稻属A基因组8个种的系统发育关系。基于最大简约法和贝叶斯法的系统发育分析表明:1)澳大利亚的O. meridionalis为A基因组的基部类群;2)亚洲栽培稻两个亚种O. sativa ssp. japonica 和 O. sativa ssp. indica分别和不同的野生类群聚为独立的两个分支,支持japonica 和 indica为多次起源;3)O. rufipogon和O. nivara在系统发育树上完全混在一起,显示出二者间不存在遗传分化;4)非洲一年生野生种O. barthii是非洲栽培稻O. glaberrima的祖先,而非洲多年生野生种O. longistaminata与O. glaberrima/O. barthii.亲缘关系较远;5)分子钟方法估测A基因组类群约在2百万年前(2.0MYA)开始分化,亚洲栽培稻和非洲栽培稻,以及亚洲栽培稻的两个亚种则分别在0.7和 0.4 MYA左右开始分化。此外,通过核基因内含子序列与其它常用片段如ITS,matK等对比分析表明,进化速率相对较快的核基因内含子序列可以有效地用于近缘类群的系统发育研究。 2. Oryza rufipogon 和O. nivara群体遗传研究及亚洲栽培稻起源 对于亚洲野生类群O. rufipogon和O. nivara是合并为一个种还是处理为两个独立的种一直存在争议。在系统发育研究基础上,我们选取4个核基因内含子或5’-UTR区(Waxy, LHS,CatA和1个未注释基因),对采自整个分布区的群体样品进行了多克隆测序,结果表明:1)检测到O. rufipogon和O. nivara均有较高的核苷酸多态性,4个位点上π值和θw值平均分别为0.011和0.014;2)且二者在遗传上没有明显分化,两个类群在4个核基因位点上均检测到大量共享多态(shared polymorphism),未发现固有差异(fixed difference),表明它们历史上可能属于一个大群体,支持将二者作为种内不同生态型或亚种处理;3)基因谱系树表明亚洲栽培稻的两个亚种indica和japonica分别和不同的O. rufipogon (包括O. nivara)群体聚在一起,进一步从基因谱系角度支持亚洲栽培稻多次起源假说。 3.转座子在群体遗传与系统发育研究中的应用 鉴于目前植物谱系地理学研究中缺乏具有足够信息量的分子标记用于检测种内遗传变异,我们选取3个核基因中的转座子,通过对取自O. rufipogon和O. nivara整个分布区的37份样品的克隆测序,探讨了进化速率快、信息含量丰富的转座子序列在群体遗传上的应用。结果表明:1)无论在物种水平还是群体水平,转座子能检测到比包括内含子在内的其它DNA区域高得多的遗传变异;2)在物种水平上,异交多年生的O. rufipogon和自交一年生的O. nivara多样性均较高,且2个种间相差很小,二者在3个位点上平均核苷酸多样性π值均为0.013,差别主要表现在O. rufipogon杂合位点比例(46.1%)明显高于O. nivara(9.1%),说明交配系统不同并不一定和物种多样性水平相关;3)是否发生转座子序列插入是有价值的系统发育信息,发生在不同染色体上3个基因中的转座子插入进一步证实A基因组基部类群是O. meridionalis;通过叶绿体中3个转座子的插入现象推断了稻族一些四倍体物种,如稻属BC基因组的一些类群的母本来源。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

苜蓿(Medicago Sativa L)是在共生固氮研究中常用的豆科植物之一。为了研究共生固氮的机理,尤其是对宿主植物豆血红蛋白基因和其它结瘤素基因的结构、表达和调控进行探讨。我们以λ系列噬菌体EMBL4作载体,用苜蓿核DNA10-20Kb片段作供体,构建了苜宿核基因组文库,共得到8.75×105pfu重组噬菌体,达到了建库的容量。用EcoR I对10个随机选择的重组子DNA进行酶切检查,证明其插入片段大小分布在10-22Kb之间,与预期的相同。用苜蓿豆血红蛋白CDNA作探针,经三轮噬菌斑原位杂交和点杂交,成功地从基因文库中分离出四个含豆血红蛋白基因同源顺序的重组噬菌体克隆。对其中之一用EcoR I Bgl II、 Hind III作了酶谱分析。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

本论文以无融合生殖的大黍(Panicum maximum Jacp.)作为无融合生殖基因的供体,试图通过体细胞杂交方法向水稻(Oryza sativa L.)导入无融合生殖基因。结果如下:采用PEG融合法,诱导水稻原生质体与大黍原生质体融合,经过融合体筛选、培养,成功地获得了再生水稻植株。在融合前,水稻原生质体经过2.5 mM碘乙酰胺(IOA)在室温(22~25℃)条件下处理15分钟,大黍原生质体经过60Kr软x射线照射或不做任何处理。经双亲处理选择系统获得移栽成活的25株再生植株;经水稻单亲处理选择系统获得移栽成活再生植株3株。这两类融合再生植株(经双亲处理选择系统获得的25株和经单亲处理选择系统的3株)在花器官形态、结构及生殖特性上与对照亲本水稻植株有显著的差异,出现多花药(一朵颖花具7至11枚,甚至13枚花药)、多胚珠(一个子房内2~3个胚珠)及多胚囊(一个胚珠中2个以上胚囊)等现象;雌、雄性育性显著降低或完全消失,仅有5株能够少量结实,I-KI溶液着色的花粉从0至68%不等;胚胎学检查表明不能结实的植株雌性均不育,即不能分化出正常的胚囊结构。进一步的检查正在进行中。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

本文以光敏色素A (phyA)的特异性基因片段RPA3为探针,利用RNA斑点杂交的方法对光敏核不育水稻农垦58S及对照农垦58叶片中phyA mRNA的丰度进行了分析。结果显示:在育性转换敏感期,光周期处理O天时,农垦58S (NK 58S) phyA mR-NA的丰度比农垦58 (NK 58) phyA mRNA的高。光周期处理5天(雌雄蕊原基形成期)及10天(花粉母细胞形成期)时,短日照条件下(SD),NK 58S phyA mRNA的丰度均比NK58高。进一步比较3天龄NK58S及NK58黄化苗中phyA基因表达的差异,发现NK58S phyA mRNA的丰度比NK58高,并且两品种均符合黄化苗中phyA对其mRNA丰度的负调控作用。这一结果进一步证实:甲基化水平低的NK58S phyA基因比NK58 phyA基因更活跃地表达,进而导致转录水平与翻译水平上的差异,最终参与调节NK 58S的育性转换。 另外,通过持续远红光和红光照射黄化水稻幼苗诱导叶绿素合成的实验,分析了NK58S与NK58之间光敏色素生物功能的差异。持续远红光高辐照度反应(FR-HIR)由phyA负责调节,持续红光高辐照度反应(R-HIR)由phyB负责调节。实验结果显示:持续FR使NK58S与NK58合成叶绿素的含量在12 h时达到最高,并且NK58中叶绿素合成的相对效应比NK585高。持续R使NK58S及NK58中叶绿素的含量在24小时连续处理下持续增加,而且在此时间进程中,NK58中叶绿素合成的相对效应也都比NK58S高。这些结果说明在NK58S和NK58中phyA和phyB均参与了叶绿素合成的调节,并且phyA,phyB在NK58S和NK58黄化苗转绿过程中的作用存在差异。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

1.水稻多卵卵器的起源:被子植物的卵器中通常只有一个卵细胞。我们在水稻多胚品系胚囊中观察到二卵卵器和三卵卵器,本研究对其大孢子发生和胚囊发育进行了细胞胚胎学观察,揭示了水稻多卵卵器的起源.观察结果表明,该品系能进行正常的大孢子发生。大孢子母细胞进行正常的减数分裂形成四个大孢子靠近合点端的大孢子发育,其它三个退化。功能大孢子第一次有丝分裂后两个子核被一中央大液泡分隔在胚囊珠孔端和合点端,与此同时胚囊出现不均衡生长,珠孔端迅速膨大,合点端几乎不增大,致使二核末期的胚囊呈倒梨形.紧接着发生第二次有丝分裂,合点端核分裂时纺锤丝与胚囊纵轴平行,而珠孔端核分裂时纺锤丝与胚囊纵轴成4 5度夹角.由此产生的四核胚囊中,合点端一核向胚囊中部或中上部(胚囊珠孔端)迁移,四核胚囊再经一次有丝分裂形成两种类型的核分布偏离蓼型的八核胚囊。一种类型是珠孔端四个核,中部与合点各二个核,在胚囊细胞化过程中,珠孔端四核 分化成四细胞卵器,其中卵细胞和助细胞各二个,中部的二核分化成二极核中央细胞,合点 端的二核形成反足细胞。另一种类型是珠孔端六个核,合点端二个核,在胚囊细胞化过程中, 两端各一核向中部迁移分化成二极核中央细胞,珠孔端剩余的五核分化成五细胞卵器,其 中卵细胞三个,助细胞二个,合点端的一核迅速分裂形成反足细胞. 2.水稻同源三倍体TAR的生殖特性:TAR的单穗结实率平均可达10%,核型分析表明此三倍体产生的后代个体仍为具有36条染色体的三倍体.细胞胚胎学初步观察显示TAR为一具兼性无融合生殖特性的水稻新种质,其胚珠几乎都能进行胚囊的分化,但其中仅有33%的胚囊有较正常的结构,9%的胚囊在散粉前进行胚胎发生,58%的胚囊发育显著异常,表现为极性紊乱、多极核或缺失雌性生殖单位等。 3.水稻亚种间杂种败育的细胞学基础:对普通栽培稻不同品种类型间杂种颖花败育的细胞学基础及雌性败育的过程进行的细胞学研究表明:1)引起杂种颖花败育的原因有胚囊败育,花粉败育、开花时花药不开裂和雌雄异熟.其中胚囊败育而丧失受精能力是引起低结实率的最重要的因素,开花时花药不开裂和雌雄异熟在一定程度上形成了雌雄性细胞时间和空间的隔离屏障。2)杂种植株的所有大孢子母细胞都能进行正常的减数分裂形成四个大孢子,败育主要发生在靠近合点端的功能大孢子分化形成胚囊的早期,有的胚囊母细胞在进行第一次有丝分裂前便萎缩解体,多数能完成一次或二次有丝分裂形成二核或四核败育胚囊.败育的共同特征是无液泡的分化,细胞质少或退化,在败育胚囊残迹部位,解体的珠心细胞和萎缩的胚囊残溃混杂垛叠.已受精的杂种子房没有观察到胚及胚乳发育的异常.籼粳杂种胚囊败育频率较高. 4.籼粳杂种生殖障碍的基因定位:应用具有1 37个标记位点的籼粳杂交窄叶青8号/京系17)F1花药培养获得的127个双单倍体OH)群体构建的R FLP图谱,对控制籼粳杂种颖花败育的基因座位进行了定位研究。结果在第1、3、4、5、6、7、8、1 2染色体上检测到1 0个基因座位,其中第3、12染色体上的2个不育基因位点str3和str12与同一杂交组合F2分离群体中发现的异常分离热点处于相同的染色体区段.stj-6的基因加性效应为负值,有增加籼粳亲和性的作用;其余的不育基因座位皆有增加籼梗杂种不育性的作用. 5.籼粳杂种胚囊败育的遗传分析和基因定位:利用DH系构建的分子图谱及DH系衍生的2个回交群体定位了引起籼梗杂种胚囊败育的2个互补的主效基因esa-l(E1或e1位点)和esa-2(E2或e2位点),它们分别位于第6和第1 2染色体.在不育基因位点,籼稻基因型为EIEle2e2,粳稻基因型为elelE 2E 2,杂交后代中基因型为EIE2,Ele2、elE 2的雌配子体正常发育,携带ele2基因型的雌配子体表现败育.胚囊育性受配子体基因型控制,孢予体遗传背景影响胚囊败育基因的表达.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

叶绿素突变泛指能导致叶绿素代谢失调的核基因或叶绿体基因突变。发生叶绿素突变的植物个体普遍表现为叶色的变化,目前已报道的多数叶绿素突变体为人工诱变产物。叶绿素缺失突变导致的叶结素代谢缺陷实际上反映了叶绿体发育过程的缺陷,研究叶绿素突变更重要的意义是在于阐明叶绿体发育过程。 本研究所用材料1103s是一类特殊的叶绿素突变体,为籼性光敏核不育水稻(Oryza sativa L.)8902s群体中发现的自发突变体。该突本所具有的失绿特性为特定温度条件下才表现出来的瞬时性状,在环境温度恢复后,失绿组织可复发。遗传分析表明该突变由隐性核基因控制。本文不1103s所具有的温度敏感和失绿复绿特性,在亚细胞水平和生理化水平进行了详细的探讨。 叶绿素含量的检测表明,诱导后表现失绿的叶片组织内叶绿素含量明显降低,叶绿素a/b比值升高,原脱植基叶绿素含量低于绿色组织。失绿组织中的这种原脱植基叶绿素在失绿组织中含量的减少是由两方面因素造成的,其一是叶绿素合成过程中原脱植基叶绿素合成之前的某一步过程反应受阻;其二是原脱植基叶绿素向叶绿素转化的过程是正常进行的。 对1103s叶绿体内部的超微结构观察表明:1.控制叶绿素缺失性状的是一多效基因。该基因在特定温度条件下表达时,不仅影响到叶绿体的发育,也对细胞质中的其他细胞器产生重要的影响,其结果是细胞质中的高度有序的内膜系统被大量形状不规则的泡状结构所取代。放大后发现,这类泡状结构由(1)线粒体(2)功能未知的泡状结构I,其内部含颗粒状物质泡结构被膜内还有数层不连续的膜残片(3)功能未知的泡状结构II,其内部含大颗粒状物质。2.该突变体表达失绿和复绿过程中,叶绿体内部膜结构的变化伴随叶绿素含量的变化也有退脂和恢复的过程,但与已报道的其他突体有两个明显的不同:首先,在退化细胞的叶绿体内未观察到前片层体的存在。前片层体是叶绿体发育过程中黄化体阶段常见的非常明显的特殊结构,在电镜下为有规律的晶格状结构。已有研究表明,前片层体的形成与原脱植基叶绿素的积累有密切关系。与组培白化苗中检测到的结果不同,失绿组织中原脱植基叶绿素的含量不但没有积累,反而少于绿色组织中的含量,而造成该突变体在失绿过程中质体内无前片层体形成。其次,1103s在叶绿体退化过程中类囊体膜的变化不同于其化温敏的转绿型叶绿素突变体,尤其是在失绿过程中,其类囊体膜不是以直接解体的方式减少而是以单类囊体膜紧靠为主要特征。 对野生型 8902s与1103s类囊体膜结构的冰冻蚀刻分析表明,1103s失绿叶片上的失绿组织和绿色组织中,EFs面的大颗粒结构均异常。其异常之处表现在每个颗粒明显解离成两个亚单位(上面观),而在野生型8902s中则无上述现象出现。亚单位的解离程度在失绿组织中更明显。有间接证据研究表明,EFs面上的大颗粒代表PS II。如果该推论正确,那么失绿叶片的失绿组织和绿色组织中,PS II都可能是异常的。 另外,通过对失绿组织和绿色组织全叶蛋白双向电泳图谱的比较,得到了一个特异缺失的叶蛋白组分,该蛋白的分子量为51kd。此蛋白在失绿叶片上的失绿组织和绿色组织之间存在组织差异性。通过对该蛋白在不同温度处理和不同遗传背景下的变化规律分析,发现该蛋白是一存在于许多水稻品系叶片中的高含量组分,此蛋白表达本身不受变温诱导过程的影响,而是受另一感温过程的调控。初步分析表明该蛋白为一失绿相关蛋白。 综上所述,1103s所具有的失绿和复绿特性是核基因多效表达的结果,有一感温过程调控下游蛋白表达的复杂过程。此外,该突变特性很可能与PS II的结构异常有关。