118 resultados para LASER-ABSORPTION SPECTROSCOPY
Resumo:
We demonstrate that by increasing the amount of (In, Ga)As deposit in a quantum dot layer, the intersublevel absorption wavelength for (In, Ga)As/GaAs quantum-dot infrared photodetectors can be blue-shifted from 15 to 10 mu m while the photoluminescence peak is red-shifted. We directly compare the measured energy spacing between intersublevels obtained from infrared absorption spectroscopy with those obtained from photoluminescence spectroscopy. We find that the intersublevel energy spacing determined from absorption measurements is much larger than that obtained from the photoluminescence measurements. (C) 2000 American Institute of Physics. [S0003-6951(00)04524-1].
Resumo:
Density gradient ultracentrifugation (DGU) has emerged as a promising tool to prepare chirality enriched nanotube samples. Here, we assess the performance of different surfactants for DGU. Bile salts (e.g., sodium cholate (SC), sodium deoxycholate (SDC), and sodium taurodeoxycholate (TDC)) are more effective in individualizing Single Wall Carbon Nanotubes (SWNTs) compared to linear chain surfactants (e.g., sodium dodecylbenzene sulfonate (SDBS) and sodium dodecylsulfate (SDS)) and better suited for DGU. Using SC, a narrower diameter distribution (0.69-0.81 nm) is achieved through a single DGU step on CoMoCAT tubes, when compared to SDC and TDC (0.69-0.89 nm). No selectivity is obtained using SDBS. due to its ineffectiveness in debundling. We assign the reduce selectivity of dihydroxy bile salts (S DC and TDC) in comparison with trihydroxy SC to the formation of secondary micelles. This is determined by the number and position of hydroxyl ( OH) groups on the a-side of the steroid backbone. We also enrich CoMoCAT SWNT in the 0.84-0.92 nm range using the Pluronic F98 triblock copolymer. Mixtures of bile salts (SC) and linear chain surfactants (SOS) are used to enrich metallic and semiconducting laser-ablation grown SWNTs. We demonstrate enrichment of a single chirality, (6,5), combining diameter and metallic versus semiconductillg separation on CoMoCAT samples.
Resumo:
The LO phonon modes in the barrier layers of a GaInAs/AlInAs multiple quantum well structure are investigated by resonance Raman scattering (RRS), the excitation laser photon energy tuned to resonate with the above barrier interband transition energy. The resonance enhancement of LO phonon peaks are shown to be caused by Frohlich electron-phonon interaction. The pressure-dependent profiles for both AlAs-like (LO(2) mode) and InAs-like (LO(1) mode) Raman peak intensities are well fitted by the Gaussian lineshape. The shift between these two profiles can be explained by the outgoing RRS mechanism, providing information on the pressure-induced shift of the excitonic transition energy. The amplitude ratios of the two profiles are close to 1, showing a well defined two-mode behavior and the nearly equal polarizability for Al-As and In-As bonds in AlInAs alloy.
Resumo:
Using Nd: YAG laser (532 nm) pumped mixed-dye laser. we obtained the output of this dye enhanced at the wavelength interval equivalent to that given by the copper vapor laser pumped dye laser. This measure favored is with the measurement of single-color three-photon resonant ionization spectrum of atomic uranium in the range of 562-586 nm,which is otherwise not efficiently covered by Nd: YAG laser pumped dye laser with any single dye. Thus 140 U I energy levels were obtained and the peaks of interest 575.814 nm and 575.836 rim were well resolved and their relative intensity determined.
Resumo:
We combine theories of optimal pump-dump control and the related transient probe absorption spectroscopy in order to elucidate the relation between these two optical processes and the possibility of experimental realization. In the weak response regime, we identify the globally optimal pair of pump-dump control fields, and further propose a second-order difference detection scheme to monitor the wave packets dynamics that is jointly controlled by both the pump and dump fields. The globally optimal solution serves also as the initial input for the iterative search for the optimal control fields in the strong response regime. We use a model I-2 molecule to demonstrate numerically the pump-dump control and the detection of a highly vibrationally excited wave packet focusing dynamics on the ground X surface in both the weak and strong response regimes. The I2B surface serves as the intermediate to assist the pump-dump control and the optical detection processes. Demonstrated in the strong response regime are the optimal pair of pump-dump molecular-pi pulses that invert nearly total population onto the predefined target region within a half period of vibration motion. (C) 1999 American Institute of Physics. [S0021-9606(99)00115-4].
Resumo:
The titanium species in four kinds of titanium-containing MFI zeolites have been studied by ultraviolet (UV)-Raman and ultraviolet visible (UV-Vis) absorption spectroscopies and by the epoxidation of propylene with diluted H2O2 solution (30%). UV-Raman spectroscopy is proved to be a suitable means to estimate qualitatively the framework titanium in TS-l zeolites. Based on the comparison of the relative intensity ratio I-1125/I-380 of UV-Raman spectra, the TS-1(conv.) sample synthesized hydrothermally by the conventional procedure shows the highest amount of framework titanium. UV-Vis spectroscopy reveals that besides minor anatase. titanium species are mainly tetrahydrally coordinated into the framework for TS-l(conv.) or the Ti-ZSM-5 sample prepared by gas-solid reaction between deboronated B-ZSM-5 and TiCl4 vapor at elevated temperatures. For the TS-1(org.) and TS-1(inorg.) samples synthesized hydrothermally using tetrapropylammonium bromide (TPABr) as template and tetrabutylorthotitanite (TBOT) and TiCl3 as titanium source, respectively, the presence of mononuclear and isolated TiOx species which are proposed to bond to the zeolite extraframework is observed. In addition to the framework titanium species, these isolated TiOx species are assumed to be also active for propylene epoxidation.
Resumo:
This letter demonstrates an alternative method to form gallium silicate glass ceramics using high-energy electron irradiation. Compared with glass ceramics obtained from the conventional thermal treatment method, the distribution and crystal sizes of the precipitated Ga2O3 nanoparticles are the same. An advantage of this method is that the spatial distribution of the precipitated nanoparticles can be easily controlled. However, optically active dopants Ni2+ ions do not participate in the precipitation during electron irradiation. (c) 2007 American Institute of Physics.
Resumo:
河南南阳独山玉的开采历史可以追溯到新石器时代,在我国玉文化中占有重要地位。鉴于当前对独山玉进行无损鉴别的方法较少,利用质子激发X荧光技术(proton induced X-ray emission,PIXE)、X射线衍射(X-ray diffraction,XRD)、激光Raman光谱(laser Raman spectroscopy,LRS)和扫描电子显微镜(scanning electron microscope,SEM)等技术对河南南阳独山玉料进行岩石矿物学分析。结果表明:独山玉主要由钙长石矿物构成,晶粒细小且结合紧密的显微结构与独山玉具有极高的稳定性有较大关系。PIXE,XRD和Raman技术作为无损分析方法为鉴定独山玉提供了准确有效的方法,为研究贵重的古玉样品提供了技术支持。
Resumo:
Spin-coated films of nickel 1,6,10,15,19,24,28,33-octa-iso-pentyloxy-2,3-naphthalocyanine complex were obtained and characterized by UV-vis absorption spectroscopy. A linear relationship between the absorbance and solution concentration was observed. Low concentration solutions could afford smooth and homogeneous film surfaces as indicated by atomic force microscopy. The film structure was studied by small angle X-ray diffraction. The films were used for NO2 sensing experiments. The results indicate that the elevation of sensing temperature can shorten the response time and increase recovery ratio and response magnitude of the sensing films. High NO2 concentration can also shorten response time. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Glass systems of composition xBiCl(3)-(1-x)TeO2 (x=0.2, 0.4, 0.5 and 0.6, respectively) have been investigated by means of DSC, infrared absorption spectroscopy and Raman spectroscopy in order to obtain information about the transformation of structure, thermal and optical properties in the formation of the glass network. The results confirm that the addition of BiCl3 network former increases the glass forming ability and the optical transmission range. And also from Raman results a structural evolution was observed where the number of structural units described as [TeO3] trigonal pyramids, [TeO3+1] polyhedra and ionic behavior bonds (NBO) increases at the expense of the [TeO4] trigonal bipyramids. Bi3+ ions exist in network structure as [BiO6] or [BiCl6] octahedral coordination. As upconversion luminescence glass host, this glassy system is desired for optical properties but the thermal stability will still be improved. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Nanocrystalline Zn0.95-xNi0.05AlxO (x = 0.01, 0.02, 0.05 and 0.10) diluted magnetic semiconductors have been synthesized by an autocombustion method. X-ray absorption spectroscopy, high-resolution transmission electron microscopy, energy-dispersive spectrometry and Ni 2p core-level photoemission spectroscopy analyses revealed that some of the nickel ions were substituted for Zn2+ into the ZnO matrix while others gave birth to NiO nanoclusters embedded in the ZnO particles. The Zn0.95Ni0.05O sample showed no enhancement of room-temperature ferromagnetism after Al doping. (C) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Nanocrystalline Zn0.95-xCo0.05AlxO (x=0, 0.01, 0.05) diluted magnetic semiconductors have been synthesized by an auto-combustion method. X-ray diffraction measurements indicated that Al-doped Zn0.95Co0.05O samples had the pure wurtzite structure. X-ray absorption spectroscopy, high-resolution transmission electron microscope, energy dispersive spectrometer and Co 2p core-level photoemission spectroscope analyses indicated that Co2+ substituted for Zn2+ without forming any secondary phases or impurities. Resistance measurements showed that the resistance values of Co and Al codoped samples were still so large in the giga magnitude. Magnetic investigations showed that nanocrystalline Al-doped Zn0.95Co0.05O samples had no indication of room temperature ferromagnetism. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
细胞色素b6f蛋白复合体(Cytochrome b6f complex, Cyt b6f)是光合膜上参与光合作用原初反应过程的主要膜蛋白超分子复合体之一。莱茵衣藻和嗜热蓝细菌的Cyt b6f三维晶体结构均显示,每Cyt b6f单体分子含有1分子Chlorophyll a (Chl a ),充分肯定了Chl a 是Cyt b6f天然成分的观点(Kurisu et al,2003;Stroebel et al,2003)。研究表明不同来源的Cyt b6f中Chla单线激发态寿命(或荧光寿命)并不一样,多数的研究结果认为Cyt b6f中Chla单线激发态寿命只有200ps左右,但是也有Cyt b6f中Chla单线激发态寿命为~600ps的报道;而甲醇中游离Chl a 的单线激发态寿命为4ns左右。针对Cyt b6f中Chla单线激发态寿命快速淬灭的现象,Dashdorj 等(2005)根据晶体结构推测Cyt b6f中Chla单线激发态和邻近的Cyt b6亚基上Tyr105残基发生电子交换传递,从而快速淬灭Chla单线激发态,减少了三线态Chl a和单线态氧的产生,并且认为这是Cyt b6f保护自身不受单线态氧破坏的一种机制,但是这一推测缺乏有力的证据。另外,Cyt b6f中Chla的功能仍然未知。本文以菠菜Cyt b6f为对象,结合多种实验手段,测定了菠菜Cyt b6f中Chl a单线激发态寿命,并对复合体中Chl a 单线激发态淬灭的机理进行了深入研究。此外,我们还对复合体中Chl a 可能的功能进行了初步地探讨。获得了如下的结果: 1.针对不同来源的Cyt b6f中Chla单线激发态寿命(或荧光寿命)测定结果不同的报道,仔细分析了其中的原因,发现除了样品来源的差异外,使用不同的去垢剂可能是一个不可忽视的因素。在实验中,不同的研究者分别采用了十二烷基麦芽糖苷(n-Dodecyl β-D-maltoside,DDM,)和八烷基葡萄糖苷(n-Octyl β-D-glucopyranoside,β-OG)作为溶解样品的去垢剂。因此,本文借助稳态吸收和稳态荧光光谱、瞬态光散射技术,CD光谱和亚皮秒时间分辨吸收光谱等技术,分别研究了这两种去垢剂对Cyt b6f结构和功能的不同影响。结果表明,DDM去垢剂能使Cyt b6f处于较好的分散体系中,其中血红素和Chl a分子处于特定的蛋白环境中,不会导致Cyt b6f变性;而β-OG去垢剂会使Cyt b6f产生聚合现象,其中的血红素和Chl a与蛋白环境的相互作用减弱,和DDM相比其电子传递活性显著降低,Chl a单线激发态寿命延长,Chl a更容易被光破坏。通过这一工作,我们优化和确定了Cyt b6f的溶解条件,为下面的研究工作打下了良好的基础。 2.利用Tyr的特异性修饰剂p-Nitrobenzenesulfonyl Fluoride(NBSF)对Cyt b6f样品进行特性修饰,经原子吸收谱、荧光谱、CD谱、质谱等方法对修饰后的样品进行鉴定,并结合时间分辨飞秒吸收光谱技术,测得修饰后的样品在660nm激发下Chl a 单线激发态寿命延长,从而在实验上提供了Tyr与淬灭Chla单线激发态有关的证据。但是对Cyt b6f 中Chl a瞬态吸收图谱仔细研究表明,菠菜Cyt b6f 中Chl a单线激发态快速淬灭过程中并没有发现Tyr与Chl a 之间发生电子传递时所形成的Chla•¯。以上结果表明,Cyt b6f 中Chl a单线激发态快速的淬灭确实和邻近的Tyr105有关,但是与Dashdorj 等提出的Chla单线激发态和Tyr105残基发生了电子交换传递从而淬灭Chla单线激发态这一想法不符,关于这一问题值得进一步深入研究。 3.红光和绿光对Cyt b6f 照射,Cyt f可以被还原,并且红光比绿光更容易使Cyt f 还原,暗示Cyt f 的还原与Chl a 的关系密切,有可能是Chl a 被激发后,其被激发的电子传给Cyt f。对这一现象的进一步研究表明,Cyt b6f在光照条件下,Cyt f 的还原与体系内C10-PQ库的氧化还原状况相关,氧化型的C10-PQ可能介导电子从Chla传向Cyt f。由于在体内质体醌库的氧化还原状态往往决定Cyt b6f 的氧化还原状态,而通过对Cyt b6f不同氧化和还原状态的吸收谱和荧光谱的研究表明,氧化态和还原态的Cyt b6f 中,Chl a 与蛋白的结合状态是有差异的。这些差异可能暗示着Chl a 分子在行使其功能时与复合体的氧化还原状态是有关系的。通过以上的结果,对Cyt b6f中Chl a 可能的功能进行了假设。 4.此外,我们还发现Cyt b6f具有明显的过氧化物酶活性。在0.1 mmol/L乙酸钠缓冲液,pH3.6,25℃,[H2O2] <40mmol/L的条件下,其催化反应的速度常数为kobs=26±1.2M•s-1;对H2O2的Km 值为50mmol/L,对guaiacol的Km 值为2mmol/L;反应的最适pH为3.6,最适离子强度为0.1,最适温度为35℃。推测Cyt b6f的这种过氧化物酶活性可能是在胁迫环境下使Cyt b6f中的血红素和Chl a 分子免受H2O2的破坏。
Resumo:
Hydrogenated silicon (Si:H) films near the threshold of crystallinity were prepared by very high-frequency plasma-enhanced chemical vapor deposition (VHF-PECVD) using a wide range of hydrogen dilution R-H = [H-2]/[SiH4] values of 2-100. The effects of H dilution R-H on the structural properties of the films were investigated using micro-Raman scattering and Fourier transform infrared (FTIR) absorption spectroscopy. The obtained Raman spectra show that the H dilution leads to improvements in the short-range order and the medium-range order of the amorphous network and then to the morphological transition from amorphous to crystalline states. The onset of this transition locates between R-H = 30 and 40 in our case, and with further increasing R-H from 40 to 100, the nanocrystalline volume fraction increases from similar to23% to 43%, and correspondingly the crystallite size enlarges from similar to2.8 to 4.4 nm. The FTIR spectra exhibit that with R-H increasing, the relative intensities of both the SiH stretching mode component at 2100 cm(-1) and wagging mode component at 620 cm(-1) increase in the same manner. We assert that these variations in IR spectra should be associated with the formation of paracrystalline structures in the low H dilution films and nanocrystalline structures in the high H dilution films. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Isochronal thermal-annealing behavior of NTD floating-zone silicon grown in hydrogen ambient (called NTD FZ(H) Si) is presented. The dependencies of resistivity and carrier mobility on annealing temperature are determined by room-temperature Hall electrical measurements. Using infrared absorption spectroscopy, hydrogen-related infrared absorption bands evolution for NTD FZ(H) Si were measured in detail. It is demonstrated that compared with NTD FZ(Ar) Si, NTD FZ(H) Si exhibits the striking features upon isochronal annealing in temperature range of 150 similar to 650 degreesC: there appears the formation of an excessive shallow donor at annealing temperature of 500 degreesC. It is shown that the annealing behavior is directly related to the reaction of hydrogen and irradiation-induced defects. The evolution of infrared absorption bands upon temperature reflects a series of complex reaction process: irradiation-induced defects decomposition, breaking of Si-H bonds, migration and aggregation of atomic hydrogen, and formation of the secondary defects. (C) 2002 Elsevier Science B.V. All rights reserved.