23 resultados para Inactivation du chromosome X
Resumo:
This study provides a useful biodosimetry protocol for radiation accidents that involve high doses of heavy particle radiation. Human peripheral blood lymphocytes (PBLs) were irradiated in vitro with high doses (5–50 Gy) of charged heavy-ion particles (carbon ions, at an effective linear-energy-transfer (LET) of 34.6 keV/ m), and were then stimulated to obtain dividing cells. PBLs were treated with 100nMcalyculin A to force chromosomes to condense prematurely, and chromosome spreads were obtained and stained with Giemsa. The G2 prematurely condensed chromosome (G2-PCC) index and the number of G2-PCC including fragments (G2-PCC-Fs) per cell for each radiation dose point were scored. Dose-effect relationships were obtained by plotting the G2-PCC indices or G2-PCC-Fs numbers against radiation doses. The G2-PCC index was greater than 5% up to doses of 15 Gy; even after a 30Gy radiation dose, the index was 1 to 2%. At doses higher than 30 Gy, however, the G2-PCC indices were close to zero. The number of G2-PCC-Fs increased steeply for radiation doses up to 30 Gy at a rate of 1.07 Gy−1. At doses higher than 30 Gy, the numbers of G2-PCC-Fs could not be accurately indexed because of the limited numbers of cells for analysis. Therefore, the number of G2-PCC-Fs could be used to estimate radiation doses up to 30 Gy. In addition, a G2-PCC index close to zero could be used as an indicator for radiation doses greater than 40 Gy.
Resumo:
Oxidative damage is an important mechanism in X-ray-induced cell death. Radiolysis of water molecules is a source of reactive oxygen species (ROS) that contribute to X-ray-induced cell death. In this study, we showed by ROS detection and a cell survival assay that NADPH oxidase has a very important role in X-ray-induced cell death. Under X-ray irradiation, the upregulation of the expression of NADPH oxidase membrane Subunit gp91(phox) was dose-dependent. Meanwhile, the cytoplasmic subunit p47(phox) was translocated to the cell membrane and localized with p22(phox) and gp91(phox) to form reactive NADPH oxidase. Our data Suggest, for the first time, that NADPH oxidase-mediated generation of ROS is an important contributor to X-ray-induced cell death. This suggests a new target for combined gene transfer and radiotherapy.
Resumo:
The L-shell x-ray yields of Zr and Mo bombarded by slow Ar16+ ions are measured. The energy of the Ar16+ ions ranges from about 150keV to 350keV. The L-shell x-ray production cross sections of Zr and Mo are extracted from these yields data. The explanation of these experimental results is in the framework of the adiabatic directionization and the binding energy modified BEA approximation. We consider, in the slow asymmetric collisions such as Ar and Mo/Zr, the transient united atoms (UA) are formed during the ion-surface interaction and the direct-ionization is the main mechanism for the inner-shell vacancy production. Generally, the theoretical results are in good agreement with the experimental data.
Resumo:
The X-ray spectra of Nb surface induced by Arq+ (q = 16,17) ions with the energy range from 10 to 20 keV/q were studied by the optical spectrum technology. The experimental results indicate that the multi-electron excitation occurred as a highly charged Ar16+ ion was neutralized below the metal surface. The K shell electron of Ar16+ was excited and then de-excited cascadly to emit K X-ray. The intensity of the X-ray emitted from K shell of the hollow Ar atom decreased with the increase of projectile kinetic energy. The intensity of the X-ray emitted from L shell of the target atom Nb increased with the increase of projectile kinetic energy. The X-ray yield of Ar17+ is three magnitude orders larger than that of Ar16+.
Resumo:
The 10-20 qkeV Ar16+ and Ar17+ ions produced by SECRAL enter on metallic surface of Zr. In this interaction, the multi-electron excitation possibly occurred in the neutralization of the highly charged Ar16+ ions, which produced vacancy in the K shell. Electron of the high n state de-excited to K vacancy gives off X-ray. The experimental results show that X-ray intensities for the Ar hollow atom decrease with increase of incidence energy, and L beta X-ray intensities of target atom Zr increase with increasing incidence energy. K alpha X-ray yield per ion for Ar17+ was five orders of magnitude greater than that for Ar16+
Resumo:
Aim: To determine whether the number of non-rejoining G2-chromatid breaks can predict the radiosensitivity of human cell lines. Methods: Cell lines of human ovary carcinoma cells (HO8910), human hepatoma cells (HepG2) and liver cells (L02) were irradiated with a range of doses and assessed both of cell survival and non-rejoining G2-chromatid breaks at 24 h after irradiation. Cell survival was documented by a colony assay. Non-rejoining G2-chromatid breaks were measured by counting the number of non-rejoining G2 chromatid breaks at 24 h after irradiation, detected by the prematurely chromosome condensed (PCC) technique. Results: A linear-quadratic survival curve was observed in three cell lines, and HepG2 was the most sensitive to gamma-radiation. A dose-dependent linear increase was observed in radiation-induced non-rejoining G2-PCC breaks measured at 24 h after irradiation in all cell lines, and HepG2 was the most susceptible to induction of non-rejoining G2-PCC breaks. A close correlation was found between the clonogenic radiosensitivity and the radiation-induced non-rejoining G2-PCC breaks (r=0.923). Furthermore, survival-aberration correlations for two or more than two doses lever were also significant. Conclusion: The number of non-rejoining G2 PCC breaks holds considerable promise for predicting the radiosensitivity of normal and tumor cells when two or more than two doses lever is tested.
Resumo:
Nanostructure and morphology and their development of poly(di-n-hexylsilane) (PDHS) and poly(di-n-butylsilane) (PDBS) during the crystal-mesophase transition are investigated using small angle X-ray scattering (SAXS), wide angle X-ray diffraction and hot-stage atomic force microscopy. At room temperature, PDHS consists of stacks of lamellae separated by mesophase layers, which can be well accounted using an ideal two-phase model. During the crystal-mesophase transition, obvious morphological changes are observed due to the marked changes in main chain conformation and intermolecular distances between crystalline phase and mesophase. In contrast to PDHS, the lamellae in PDBS barely show anisotropy in dimensions at room temperature. The nonperiodic structure and rather small electronic density fluctuation in PDBS lead to the much weak SAXS. The nonperiodic structure is preserved during the crystal-mesophase transition because of the similarity of main chain conformation and intermolecular distances between crystalline phase and mesophase.
Resumo:
Reproduction and chromosome inheritance in triploid Pacific oyster (Crassostrea gigas Thunberg) were studied in diploid female x triploid male (DT) and reciprocal (TD) crosses. Relative fecundity of triploid females was 13.4% of normal diploids. Cumulative survival from fertilized eggs to spat stage was 0.007% for DT crosses and 0.314% for TD crosses. Chromosome number analysis was conducted on surviving progeny from DT and TD crosses at 1 and 4 years of age. At Year 1, oysters from DT crosses consisted of 15% diploids (2n = 20) and 85% aneuploids. In contrast, oysters from TD crosses consisted of 57.2% diploids, 30.9% triploids (3n = 30) and only 11.9% aneuploids, suggesting that triploid females produced more euploid gametes and viable progeny than triploid males. Viable aneuploid chromosome numbers included 2n + 1, 2n + 2, 2n + 3, 3n - 2 and 3n - 1. There was little change over time in the overall frequency of diploids, triploids and aneuploids. Among aneuploids, oysters with 2n + 3 and 3n-2 chromosomes were observed at Year 1, but absent at Year 4. Triploid progeny were significantly larger than diploids by 79% in whole body weight and 98% in meat weight at 4 years of age. Aneuploids were significantly smaller than normal diploids. This study suggests that triploid Pacific oyster is not completely sterile and cannot offer complete containment of cultured populations.