36 resultados para INTELLIGENT TRANSPORT SYSTEMS


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The energy dispersion of an electron in a double quantum wire with a diluted magnetic semiconductor barrier in between is calculated. An external magnetic field modifies significantly the energy dispersion of the electron which is different for the two spin states. The conductance exhibits many interesting peaks and dips which are directly related to the energy dispersions of the different electron spin states. These phenomena are attributed to the interwell coupling which can be tuned by the magnetic field due to the s-d exchange interaction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For quantum transport through mesoscopic systems, a quantum master-equation approach is developed in terms of compact expressions for the transport current and the reduced density matrix of the system. The present work is an extension of Gurvitz's approach for quantum transport and quantum measurement, namely, to finite temperature and arbitrary bias voltage. Our derivation starts from a second-order cumulant expansion of the tunneling Hamiltonian; then follows the conditional average over the electrode reservoir states. As a consequence, in the usual weak-tunneling regime, the established formalism is applicable for a wide range of transport problems. The validity of the formalism and its convenience in application are well illustrated by a number of examples.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A mesoscopic Coulomb blockade system with two transport channels is studied in terms of full counting statistics. It is found that the shot noise and skewness are crucially affected by the quantum mechanical interference. In particular, the super-Poisson behavior can be induced as a consequence of constructive interference, and can be understood by the formation of effective fast-and-slow transport channels. Dephasing and finite temperature effects are carried out together with physical interpretations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

By viewing the non-equilibrium transport setup as a quantum open system, we propose a reduced-density-matrix based quantum transport formalism. At the level of self-consistent Born approximation, it can precisely account for the correlation between tunneling and the system internal many-body interaction, leading to certain novel behavior such as the non-equilibrium Kondo effect. It also opens a new way to construct time-dependent density functional theory for transport through large-scale complex systems. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

GaN can be used to fabricate blue/green/UV LEDs and high temperature, high power electronic devices. Ideal substrates are needed for high quality III-nitride epitaxy, which is an essential step for the manufacture of LEDs. GaN substrates are ideal to be lattice matched and isomorphic to nitride-based films. Bulk single crystals of GaN can be grown from supercritical fluids using the ammonothermal method, which utilizes ammonia as fluid rather than water as in the hydrothermal process. In this process, a mineralizer such as amide, imide or azide is used to attack a bulk nitride feedstock at temperatures from 200 - 500癈 and pressures from 1 - 4 kbar. Baffle design is essential for successful growth of GaN crystals. Baffle is used to separate the dissolving zone from the growth zone, and to maintain a temperature difference between the two zones. For solubility curve with a positive coefficient with respect to temperature, the growth zone is maintained at a lower temperature than that in the dissolving zone, thus the nutrient becomes supersaturated in the growth zone. The baffle opening is used to control the mixing of nutrients in the two zones, thus the transfer of nutrient from the lower part to the upper part. Ammonothermal systems have been modeled here using fluid dynamics, thermodynamics and heat transfer models. The nutrient is considered as a porous media bed and the flow is simulated using the Darcy-Brinkman-Forchheimer model. The resulting governing equations are solved using the finite volume method. We investigated the effects of baffle opening and position on the transport phenomena of nutrient from dissolving zone to the growth zone. Simulation data have been compared qualitatively with experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current fluctuations can provide additional insight into quantum transport in mesoscopic systems. The present work is carried out for the fluctuation properties of transport through a pair of coupled quantum dots which are connected with ferromagnetic electrodes. Based on an efficient particle-number-resolved master equation approach, we are concerned with not only fluctuations of the total charge and spin currents, but also of each individual spin-dependent component. As a result of competition among the spin polarization, Coulomb interaction, and dot-dot tunnel coupling, rich behaviors are found for the self- and mutual-correlation functions of the spin-dependent currents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By replacing the flat (Ga1-xAlx)As barrier layer with a trapezoidal AlxGa1-xAs barrier layer, a conventional heterostructure can be operated in enhancement mode. The sheet density of two-dimensional electron gas (2DEG) in the structure can be tuned linearly from N-2D = 0.3 x 10(11) cm(-2) to N-2D = 4.3 x 10(11) cm(-2) by changing the bias on the top gate. The present scheme for gated heterostructures is easy to fabricate and does not require the use of self-alignment photolithography or the deposition of insulating layers. In addition, this scheme facilitates the initial electrical contact to 2DEG. Although, the highest electron mobility obtained for the moment is limited by the background doping level of heterostructures, the mobility should be improved substantially in the future. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We theoretically investigate the charge transport in the quantum waveguides in the presence of the Rashba spin-orbit interaction and the Dresselhaus spin-orbit interaction. We find that the interplay between the Rashba spin-orbit interaction and Dresselhaus spin-orbit interaction can induce a symmetry breaking and consequently leads to the anisotropic charge transport in the quantum waveguides, the conductance through the quantum waveguides depends sensitively on the crystallographic orientations of the quantum waveguides. The anisotropy of the charge transport can even survive in the presence of disorder effect in realistic systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magneto-transport measurements have been carried out on three heavily Si delta-doped In-0.52 Al-0.48 As/In-0.53 Ga-0.47 As/In-0.52 A(10.48) As single quantum well samples in which two subbands were occupied by electrons. The weak anti-localization (WAL) has been found in such high electron mobility systems. The strong Rashba spin-orbit (SO) coupling is due to the high structure inversion asymmetry (SIA) of the quantum wells. Since the WAL theory model is so complicated in fitting our experimental results, we obtained the Rashba SO coupling constant alpha and the zero-field spin splitting Delta(0) by an approximate approach. The results are consistent with that obtained by the Shubnikov-de Haas (SdH) oscillation analysis. The WAL effect in high electron mobility system suggests that finding a useful approach for deducing alpha and Delta(0) is important in designing future spintronics devices that utilize the Rashba SO coupling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A hierarchical equations of motion formalism for a quantum dissipation system in a grand canonical bath ensemble surrounding is constructed on the basis of the calculus-on-path-integral algorithm, together with the parametrization of arbitrary non-Markovian bath that satisfies fluctuation-dissipation theorem. The influence functionals for both the fermion or boson bath interaction are found to be of the same path integral expression as the canonical bath, assuming they all satisfy the Gaussian statistics. However, the equation of motion formalism is different due to the fluctuation-dissipation theories that are distinct and used explicitly. The implications of the present work to quantum transport through molecular wires and electron transfer in complex molecular systems are discussed. (c) 2007 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work a practical scheme is developed for the first-principles study of time-dependent quantum transport. The basic idea is to combine the transport master equation with the well-known time-dependent density functional theory. The key ingredients of this paper include (i) the partitioning-free initial condition and the consideration of the time-dependent bias voltages which base our treatment on the Runge-Gross existence theorem; (ii) the non-Markovian master equation for the reduced (many-body) central system (i.e., the device); and (iii) the construction of Kohn-Sham master equations for the reduced single-particle density matrix, where a number of auxiliary functions are introduced and their equations of motion (EOMs) are established based on the technique of spectral decomposition. As a result, starting with a well-defined initial state, the time-dependent transport current can be calculated simultaneously along with the propagation of the Kohn-Sham master equation and the EOMs of the auxiliary functions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transport properties through a quantum dot are calculated using the recursion method. The results show that the electric fields can move the conductive peaks along the high- and low-energies. The electric field changes the intensity of conductance slightly. Our theoretical results should be useful for researching and making low-dimensional semiconductor optoelectronic devices. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A generalized scattering matrix formalism is constructed to elucidate the interplay of electron resonance, coherence, dephasing, inelastic scattering, and heterogeneity, which play important roles in the physics of long-range electron transfer/transport. The theory consists of an extension of the standard Buttiker phase-breaking model and an analytical expression of the electron transmission coefficient for donor-bridge-acceptor systems with arbitrary length and sequence. The theory incorporates the following features: Dephasing-assisted off-resonance enhancement, inelasticity-induced turnover, resonance enhancement and its dephasing-induced suppression, dephasing-induced smooth superexchange-hopping transition, and heterogeneity effects. (C) 2002 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Longitudinal spin transport in diluted magnetic semiconductor superlattices is investigated theoretically. The longitudinal magnetoconductivity (MC) in such systems exhibits an oscillating behavior as function of an external magnetic field. In the weak magnetic-field region the giant Zeeman splitting plays a dominant role that leads to a large negative magnetoconductivity. In the strong magnetic-field region the MC exhibits deep dips with increasing magnetic field. The oscillating behavior is attributed to the interplay between the discrete Landau levels and the Fermi surface. The decrease of the MC at low magnetic field is caused by the s-d exchange interaction between the electron in the conduction band and the magnetic ions. The spin polarization increases rapidly with increasing magnetic field and the longitudinal current becomes spin polarized in strong magnetic field. The effect of spin-disorder scattering on MC is estimated numerically for low magnetic fields and found to be neglectible for our system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A nonequilibrium Green's-function formalism is employed to study the time-dependent transport through resonant-tunneling structures. With this formalism, we derive a time-dependent Landauer-Buttiker formula that guarantees current conservation and gauge invariance. Furthermore, we apply the formula to calculate the response behaviors of the resonant-tunneling structures in the presence of rectangular-pulse and harmonic-modulation fields. The results show that the displacement current plays the role of retarding the tunneling current.