107 resultados para IMPROVEMENT
Resumo:
In this paper, to understand the roles of amorphous structures which were observed within the viromatrix of Rana grylio virus (RGV), an improved immunoelectron microscopy (IEM) method was developed to detect the localization of RGV in carp Epithelipma papulosum cyprinid (EPC) cells. Infected EPC cells were fixed with 4% paraformaldehyde-0.25% glutaraldehyde mixture, dehydrated completely, and embedded in LR White resin. This method allowed good ultrastructural preservation and specific labeling with anti-RGV antibodies. The results of IEM showed that colloidal gold mainly bound to the capsids of viral particles at the stage of viral assembly, while during the viral maturation colloidal gold bound to the envelop of virions. In addition, within the viromatrix, the amorphous structures, including dense floccules, membranous materials and tubules, also had strong colloidal gold signals, revealing that those amorphous structures were participated in RGV assembly. In contrast, no significant gold labeling signals were obtained in negative controls. The present study not only provided further evidence that amorphous structures within the viromatrix were involved in the process of RGV assembly, but also developed an improved IEM method for studying the interaction between iridovirus and host cells. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The growth and toxin content of the dinoflagellate Alexandrium tamarense ATHK was markedly affected by culture methods. In early growth phase at lower cell density static or mild agitation methods were beneficial to growth, but continuous agitation or aeration, to some extent, had an adverse effect on cell growth. Static culture in 2 L Erlenmeyer flasks had the highest growth rate (0.38 d(-1)) but smaller cell size compared with other culture conditions. Cells grown under aerated conditions possessed low nitrogen and phosphorus cell yields, namely high N and P cell-quota. At day 18, cells grown in continuous agitated and 1 h aerated culture entered the late stationary phase and their cellular toxin contents were higher (0.67 and 0.54 pg cell(-1)) compared with cells grown by other culture methods (0.27-0.49 pg cell(-1)). The highest cell density and cellular toxin content were 17190 cells mL(-1) and 1.26 pg cell(-1) respectively in an airlift photobioreactor with two-step culture. The results indicate that A. tamarense could be grown successfully in airlift photobioreactor by a two-step culture method, which involved cultivating the cells statically for 4 days and then aerating the medium. This provides an efficient way to enhance cell and toxin yield of A. tamarense.
Resumo:
Sapphire substrates patterned by a selective chemical wet and an inductively coupled plasma (ICP) etching technique was proposed to improve the performance of GaN-based light-emitting diodes (LEDs). GaN-based LEDs were fabricated on sapphire substrates through metal organic chemical vapor deposition (MOCVD). The LEDs fabricated on the patterned substrates exhibit improved device performance compared with the conventional LED fabricated on planar substrates when growth and device fabricating conditions were the same. The light output powers of the LEDs fabricated on wet-patterned and ICP-patterned substrates were about 37% and 17% higher than that of LEDs on planar substrates at an injection current of 20 mA, respectively. The enhancement is attributable to the combination of the improvement of GaN-based epilayers quality and the improvement of the light extraction efficiency. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Nano-patterned sapphire substrates (NPSSs) were fabricated by a chemical wet etching technology using nano-sized SiO2 as masks. The NPSS was applied to improve the performance of GaN-based light emitting diodes (LEDs). GaN-based LEDs on NPSSs were grown by metal organic chemical vapour deposition. The characteristics of LEDs grown on NPSSs and conventional planar sapphire substrates were studied. The light output powers of the LEDs fabricated on NPSSs were considerably enhanced compared with that of the conventional LEDs grown on planar sapphire substrates.
Resumo:
In our work, nitrogen ions were implanted into separation-by-implantation-of-oxygen (SIMOX) wafers to improve the radiation hardness of the SIMOX material. The experiments of secondary ion mass spectroscopy (SIMS) analysis showed that some nitrogen ions were distributed in the buried oxide layers and some others were collected at the Si/SiO2 interface after annealing. The results of electron paramagnetic resonance (EPR) suggested the density of the defects in the nitrided samples changed with different nitrogen ion implantation energies. Semiconductor-insulator-semiconductor (SIS) capacitors were made on the materials, and capacitance-voltage (C-V) measurements were carried out to confirm the results. The super total dose radiation tolerance of the materials was verified by the small increase of the drain leakage current of the metal-oxide-semiconductor field effect transistor with n-channel (NMOSFETs) fabricated on the materials before and after total dose irradiation. The optimum implantation energy was also determined.
Resumo:
An investigation of hardening the buried oxides (BOX) in separation by implanted oxygen (SIMOX) silicon-on-insulator (SOI) wafers to total-dose irradiation has been made by implanting nitrogen into the BOX layers with a constant dose at different implantation energies. The total-dose radiation hardness of the BOX layers is characterized by the high frequency capacitance-voltage (C-V) technique. The experimental results show that the implantation of nitrogen into the BOX layers can increase the BOX hardness to total-dose irradiation. Particularly, the implantation energy of nitrogen ions plays an important role in improving the radiation hardness of the BOX layers. The optimized implantation energy being used for a nitrogen dose, the hardness of BOX can be considerably improved. In addition, the C-V results show that there are differences between the BOX capacitances due to the different nitrogen implantation energies.
Resumo:
An optimal concentration of the etching solution for deep etching of silicon, including 3% tetramethyl ammonium hydroxide and 0.3% (NH4)(2)S2O8, was achieved in this paper. For this etching solution, the etching rates of silicon and silicon dioxide were about 1.1 mu m(.)min(-1) and 0.5 nm(.)min(-1), respectively. The etching ratio between (100) and (111) planes was about 34:1, and the etched surface was very smooth.
Resumo:
We propose a new structure of GaN based Schottky barrier ultraviolet photodetector, in which a thin n-type AlGaN window layer is added on the conventional n(-)-GaN/n(+)-GaN device structure. The performance of the Schottky barrier ultraviolet photodetector is found to be improved by the new structure. The simulation result shows that the new structure can reduce the negative effect of surface states on the performance of Schottky barrier GaN photodetectors, improving the quantum efficiency and decreasing the dark current. The investigations suggest that the new photodetector can exhibit a better responsivity by choosing a suitably high carrier concentration and thin thickness for the AlGaN window layer.
Resumo:
The optimum growth condition of GaInNAs/GaAs quantum wells (QWs) by plasma-assisted molecular beam epitaxy was investigated. High-resolution X-ray diffraction and photoluminescence (PL) measurements showed that ion damage drastically degraded the quality of GaNAs and GaInNAs QWs and that ion removal magnets can effectively remove the excess ion damage. Remarkable improvement of PL intensity and obvious appearance of pendellosung fringes were observed by removing the N ions produced in the plasma cell. When the growth rate increased from 0.73 to 1.2 ML/s, the optimum growth temperature was raised from 460 degreesC to 480 degreesC and PL peak intensity increased two times. Although the N composition decreased with increasing growth rate, degradation of optical properties of GaInNAs QWs was observed when the growth rate was over 0.92 ML/s. Due to low-temperature growth of GaInNAs QWs, a distinctive reflection high-energy electron diffraction pattern was observed only when the GaAs barrier was grown under lower As-4 pressure. The samples with GaAs barriers grown under lower As-4 pressure (V/III ratio about 24) exhibited seven times increase in PL peak intensity compared with those grown under higher As-4 pressure (V/III ratio about 50). (C) 2001 Elsevier Science B,V. All rights reserved.
Resumo:
The electrical activity of defects in GaAs grown on GaAs substrates doped with Si and Be by both conventional molecular beam epitaxy (MBE) and atomic hydrogen-assisted MBE (H-MBE) were characterized by deep level transient spectroscopy. The trap densities are significantly reduced in the homoepitaxial GaAs grown by H-MBE compared to that grown by MBE. The reduction of trap densities is attributed to in situ passivation of these defects by atomic H during the growth. The improvement characteristics of GaAs materials will be significance for fabrication of semiconductor devices.
Resumo:
The increased emphasis on sub-micron CMOS/SOS devices has placed a demand for high quality thin silicon on sapphire (SOS) films with thickness of the order 100-200 nm. It is demonstrated that the crystalline quality of as-grown thin SOS films by the CVD method can be greatly improved by solid phase epitaxy (SPE) process: implantation of self-silicon ions and subsequent thermal annealing. Subsequent regrowth of this amorphous layer leads to a greater improvement in silicon layer crystallinity and channel carrier mobility, evidenced, respectively, by double crystal X-ray diffraction and electrical measurements. We concluded that the thin SPE SOS films are suitable for application to high-performance CMOS circuitry. (C) 2000 Elsevier Science S.A. All rights reserved.