171 resultados para High Pressure Die-cast
Resumo:
We have measured low-temperature photoluminescence (PL) and absorption spectra of In0.2Ga0.8As/GaAs multiple quantum wells (MQW's) under hydrostatic pressures up to 8 GPa. In PL, only a single peak is observed below 4.9 GPa corresponding to the n = 1 heavy-hole (HH) exciton in the InxGa1-xAs wells. Above 4.9 GPa, new PL lines related to X-like conduction band states appear. They are assigned to the type-II transition from the X(Z) states in GaAs to the HH subband of the InxGa1-xAs wells and to the zero-phonon line and LO-phonon replica of the type-I transition involving the X(XY) valleys of the wells. In addition to absorption peaks corresponding to direct exciton transitions in the wells, a new strong absorption feature is apparent in spectra for pressures between 4.5 and 5.5 GPa. This absorption is attributed to the pseudodirect transition between the HH subband and the X, state of the wells. This gives clear evidence for an enhanced strength of indirect optical transitions due to the breakdown of translational invariance in MQW structures. From experimental level splittings we determine the valence band offset and the shear deformation potential for X states in the In0.2Ga0.8As layer.
Resumo:
Photoluminescence of GaInP under hydrostatic pressure is investigated. The Gamma valley of disordered GaInP shifts sublinearly upwards with respect to the top of the valence band with increasing pressure and this sublinearity is caused by the nonlinear relationship between lattice constant and hydrostatic pressure. The Gamma valleys of ordered GaInP rise more slowly than that of the disordered one and the relationship between the band gap and the pressure can not be explained in the same way. Taking into account the interactions between the Gamma valley and the folded L valleys, as well as, the X valleys, the experimental pressure dependences of the band gap of ordered GaInP epilayers are calculated and fitted quite well using first order perturbation theory. The results indicate that simultaneous ordering along [111] and [100] directions can occur in ordered GaInP. (C) 1996 American Institute of Physics.
Resumo:
We have measured low-temperature photoluminescence spectra of InAs quantum dots embedded in a GaAs crystalline matrix under hydrostatic pressures up to 7 GPa. Below 4.2 GPa the spectra are dominated by the Gamma-like electron-heavy hole (HH) exciton transition in the InAs dots. Above 4.2 GPa the spectra show two X-related luminescence bands which are attributed to the indirect type-I transition between X(Xy) and HH states of the dots and the type-II transition from X states in GaAs to InAs HH states, respectively. In the Gamma-X crossover regime we find evidence for a pronounced mixing interaction between InAs Gamma-like and GaAs X-like states. The corresponding interaction potential is estimated to be 9 meV.
Resumo:
Cu samples were subjected to high-pressure torsion (HPT) with up to 6 turns at room temperature (RT) and liquid nitrogen temperature (LNT), respectively. The effects of temperature on grain refinement and microhardness variation were investigated. For the samples after HPT processing at RT, the grain size reduced from 43 mu m to 265 nm, and the Vickers microhardness increased from HV52 to HV140. However, for the samples after HPT processing at LNT, the value of microhardness reached its maximum of HV150 near the center of the sample and it decreased to HV80 at the periphery region. Microstructure observations revealed that HPT straining at LNT induced lamellar structures with thickness less than 100 nm appearing near the central region of the sample, but further deformation induced an inhomogeneous distribution of grain sizes, with submicrometer-sized grains embedded inside micrometer-sized grains. The submicrometer-sized grains with high dislocation density indicated their nonequilibrium nature. On the contrary, the micrometer-sized grains were nearly free of dislocation, without obvious deformation trace remaining in them. These images demonstrated that the appearance of micrometer-sized grains is the result of abnormal grain growth of the deformed fine grains.
Resumo:
The technology of "explosion in fractures" is one of new synthetic engineering methods used in low permeability reservoirs. The most important problem arose from the technology is to assess the deflagration propagation capability of milky explosives in rock fractures. In order to investigate detailed this problem in the laboratory, an experimental setup was designed and developed in which different conditions can be simulated. The experimental setup mainly includes two parts. One is the experimental part and the other is the measurement part. In the experimental setup, the narrow slots with different width can be simulated; meanwhile, different initial pressures and initial temperatures can be loaded on the explosives inside the narrow slots. The initial pressure range is from 0-60 MPa, and the initial temperatures range is from room temperature to 100 V. The temperature and the velocity of deflagration wave can be measured; meanwhile the corresponding pressure in the narrow slot is also measured. In the end, some typical measurement results are briefly presented and discussed.
Resumo:
Durango apatite was irradiated with energetic U ions of 2.64 GeV and Kr ions of 2.1 GeV, with and without simultaneous exposure to a pressure of 10.5 GPa. Analysis by confocal Raman spectroscopy gives evidence of vibrational changes being marginal for fluences below 5x10(11) ions/cm(2) but becoming dominant when increasing the fluence to 8x10(12) ions/cm(2). Samples irradiated with U ions experience severe strain resulting in crystal cracking and finally breakage at high fluences. These radiation effects are directly linked to the formation of amorphous tracks and the fraction of amorphized material increasing with fluence. Raman spectroscopy of pressurized irradiated samples shows small shifts of the band positions with decreasing pressure but without a significant change of the Gruneisen parameter. Compared to irradiations at ambient conditions, the Raman spectra of apatite irradiated at 10.5 GPa exhibit fewer modifications, suggesting a higher radiation stability of the lattice by the pressure applied.
Resumo:
An on-line sample introduction technique in capillary gas chromatograph (CGC) for the analysis of high-pressure gas-liquid mixtures has been designed and evaluated. A sample loop of 0.05 muL and a washing solvent loop of 0.5 muL are mounted on a 10-port switching valve, which serves as the injection valve. A capillary resistor was connected to the vent of sample loop in order to maintain the pressure of the sample. Both the sample and the washing solvent are transferred into the split-injection port through a narrow bore fused silica capillary inserted into the injection liner through a septum. The volume of the liner is used both as the pressure-release damper and evaporation chamber of the sample. On-line analysis of both reactants and resultants in ethylene olimer reaction mixture at 5 MPa was carried out, which demonstrated the applicability of the technique. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The effect of Nd addition on the microstructure and mechanical properties of a die-cast AZ91 alloy was investigated in the present work. The results show that the die-cast AZ91 alloy is composed of alpha-Mg matrix and gamma-Mg17Al12 phase. Nd addition into the AZ91 alloy leads to the formation of rare earth containing intermetallic phase. Al4Nd phase forms when Nd content is less than or equal to 1.0 wt.%. Al2Nd phase appears simultaneously when Nd content reaches to 3.0 wt.%.
Resumo:
Pure (W0.4Al0.6)C powder of about 1 mu m in diameter was sintered by the high pressure sintering (HPS) process without the addition of any binder phase. The microstructure, Vickers micro hardness and density versus the sintering time and temperature are well described. The most suitable sintering condition under pressure of 4.5 GPa is 1873 K for 8 min. Under this sintering condition, the hardness can reach 2295 kg mm(-2) and the relative density can reach 98.6%.
Resumo:
Lanthanum magnesium hexaaluminate is a very important ceramic material for high temperature applications. In this paper lanthanum magnesium hexaaluminate has been synthesized directly by solid-state reaction. The forming mechanism was investigated by XRD. The SEM photographs show that the prepared powders are made of hexagonal plates. These powders can be well sintered at the high temperature (1600 degrees C) under the high pressure (4.5 GPa), and the relative density reaches 94.8%.
Resumo:
Die-cast Mg-4Al-0.4Mn-xNd(x = 0, 1, 2, 4 and 6 wt.%) magnesium alloys were prepared successfully and influences of Nd on the microstructure, mechanical properties and corrosion behavior of the Mg-4Al-0.4Mn alloy have been investigated. The results showed that with the addition of Nd binary Al2Nd phase and Al11Nd3 phase. which mainly aggregated along the grain boundaries, were formed, and the relative ratio of above two phases was in correlation with the Nd content in the alloy. Meanwhile, the grain sizes were greatly reduced with the increasing Nd content. It was found that due to the addition of Nd both the tensile properties and corrosion resistance were improved substantially.
Resumo:
In order to study the properties of Mg-Al-RE (AE) series alloys, the Mg-4Al-4RE-0.4Mn (RE= La, Ce/La mischmetal or Ce) alloys were developed. Their microstructures, tensile properties and corrosion behavior have been investigated. The results show that the phase compositions of Mg-4Al-4La-0.4Mn alloy consist of alpha-Mg and Al11La3 phases. While two binary Al-RE (RE = Ce/La) phases, Al11RE3 and Al2RE, are formed in Mg-4Al-4Ce/La-0.4Mn alloy, and Al11Ce3 and Al2Ce are formed in Mg-4Al-4Ce-0.4Mn alloy.