31 resultados para Fractional Integral
Resumo:
This paper presents a wideband Delta Sigma-based fractional-N synthesizer with three integrated quadrature VCOs for multiple-input multiple-output (MIMO) wireless communication applications. It continuously covers a wide range frequency from 0.72GHz to 6.2GHz that is suitable for multiple communication standards. The synthesizer is designed in 0.13-um RE CMOS process. The dual clock full differential multi-modulus divide (MMD) with low power consumption can operate over 9GHz under the worst condition. In the whole range frequency from 0.72GHz to 6.2GHz, the maximal tuning range of the QVCOs reaches 33.09% and their phase noise is -119d8/Hz similar to 124d8/Hz @1MHz. Its current is less than 12mA at a 1.2V voltage supply when it operates at the highest frequency of 6.2GHz.
Resumo:
A novel algorithm of phase reconstruction based on the integral of phase gradient is presented. The algorithm directly derives two real-valued partial derivatives from three phase-shifted interferograms. Through integrating the phase derivatives, the desired phase is reconstructed. During the phase reconstruction process, there is no need for an extra rewrapping manipulation to ensure values of the phase derivatives lie in the interval [-pi, pi] as before, thus this algorithm can prevent error or distortion brought about by the phase unwrapping operation. Additionally, this algorithm is fast and easy to implement, and insensitive to the nonuniformity of the intensity distribution of the interferogram. The feasibility of the algorithm is demonstrated by both computer simulation and experiment.
Resumo:
We generalize the Faddeev-Jackiw canonical path integral quantization for the scenario of a Jacobian with J=1 to that for the general scenario of non-unit Jacobian, give the representation of the quantum transition amplitude with symplectic variables and obtain the generating functionals of the Green function and connected Green function. We deduce the unified expression of the symplectic field variable functions in terms of the Green function or the connected Green function with external sources. Furthermore, we generally get generating functionals of the general proper vertices of any n-points cases under the conditions of considering and not considering Grassmann variables, respectively; they are regular and are the simplest forms relative to the usual field theory.
Resumo:
We discuss the non-Abelian topological objects, in particular the non-Abrikosov vortex and the magnetic knot made of the twisted non-Abrikosov vortex, in two-gap superconductor. We show that there are two types of non-Abrikosov vortex in Ginzburg-Landau theory of two-gap superconductor, the D-type which has no concentration of the condensate at the core and the N-type which has a non-trivial profile of the condensate at the core, under a wide class of realistic interaction potential. We prove that these non-Abrikosov vortices can have either integral or fractional magnetic flux, depending on the interaction potential. We show that they are described by the non-Abelian topology pi(2)(S-2) and pi(1)(S-1), in addition to the well-known Abelian topology pi(1)(S-1). Furthermore, we discuss the possibility to construct a stable magnetic knot in two-gap superconductor by twisting the non-Abrikosov vortex and connecting two periodic ends together, whose knot topology pi(3)(S-2) is described by the Chern-Simon index of the electromagnetic potential. We argue that similar topological objects may exist in multi-gap or multi-layer superconductors and multi-component Bose-Einstein condensates and superfluids, and discuss how these topological objects can be constructed in MgB2, Sr2RuO4, He-3, and liquid metallic hydrogen.
Resumo:
In terms of the quantitative causal principle, this paper obtains a general variational principle, gives unified expressions of the general, Hamilton, Voss, Holder, Maupertuis-Lagrange variational principles of integral style, the invariant quantities of the general, Voss, Holder, Maupertuis-Lagrange variational principles are given, finally the Noether conservation charges of the general, Voss, Holder, Maupertuis-Lagrange variational principles axe deduced, and the intrinsic relations among the invariant quantities and the Noether conservation charges of all the integral variational principles axe achieved.
Resumo:
The differential and integral cross sections for electron impact excitation of lithium from the ground state 1s(2)2s to excited states 1s(2)2p, 1s(2)3l (l = s,p,d) and 1s(2)4l (l = s,p,d,f) at incident energies ranging from 5 eV to 25 eV are calculated by using a full relativistic distorted wave method. The target state wavefunctions are calculated by using the Grasp92 code. The continuum orbitals are computed in the distorted-wave approximation, in which the direct and exchange potentials among all the electrons are included. A part of the cross sections are compared with the available experimental data and with the previous theoretical values. It is found that, for the integral cross sections, the present calculations are in good agreement with the time-independent distorted wave method calculation, for differential cross sections, our results agree with the experimental data very well.
Resumo:
The J-integral is applied to characterize the fracture initiation of phenolphthalein polyether ketone (PEK-C) for which the concepts of linear elastic fracture mechanics (LEFM) are inapplicable at high temperatures for reasonably-sized specimens due to ex
Resumo:
Fractional energy losses of waves due to wave breaking when passing over a submerged bar are studied systematically using a modified numerical code that is based on the high-order Boussinesq-type equations. The model is first tested by the additional experimental data, and the model's capability of simulating the wave transformation over both gentle slope and steep slope is demonstrated. Then, the model's breaking index is replaced and tested. The new breaking index, which is optimized from the several breaking indices, is not sensitive to the spatial grid length and includes the bottom slopes. Numerical tests show that the modified model with the new breaking index is more stable and efficient for the shallow-water wave breaking. Finally, the modified model is used to study the fractional energy losses for the regular waves propagating and breaking over a submerged bar. Our results have revealed that how the nonlinearity and the dispersion of the incident waves as well as the dimensionless bar height (normalized by water depth) dominate the fractional energy losses. It is also found that the bar slope (limited to gentle slopes that less than 1:10) and the dimensionless bar length (normalized by incident wave length) have negligible effects on the fractional energy losses.
Resumo:
We present a new nonlinear integral transform relating the ocean wave spectrum to the along-track interferometric synthetic aperture radar (AT-INSAR) image spectrum. The AT-INSAR, which is a synthetic aperture radar (SAR) employing two antennas displaced along the platform's flight direction, is considered to be a better instrument for imaging ocean waves than the SAR. This is because the AT-INSAR yields the phase spectrum and not only the amplitude spectrum as with the conventional SAR. While the SAR and AT-INSAR amplitude spectra depend strongly on the modulation of the normalized radar cross section (NRCS) by the long ocean waves, which is poorly known, the phase spectrum depends only weakly on this modulation. By measuring the phase difference between the signals received by both antennas, AT-INSAR measures the radial component of the orbital velocity associated with the ocean waves, which is related to the ocean wave height field by a well-known transfer function. The nonlinear integral transform derived in this paper differs from the one previously derived by Bao et al. [1999] by an additional term containing the derivative of the radial component of the orbital velocity associated with the long ocean waves. By carrying out numerical simulations, we show that, in general, this additional term cannot be neglected. Furthermore, we present two new quasi-linear approximations to the nonlinear integral transform relating the ocean wave spectrum to the AT-INSAR phase spectrum.